ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0 GIF version

Theorem tfr0 5960
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr0 ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅))

Proof of Theorem tfr0
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3905 . . . . 5 ∅ ∈ V
2 opexg 3983 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ⟨∅, (𝐺‘∅)⟩ ∈ V)
31, 2mpan 414 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ V)
4 snidg 3423 . . . 4 (⟨∅, (𝐺‘∅)⟩ ∈ V → ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩})
53, 4syl 14 . . 3 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩})
6 fnsng 4967 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → {⟨∅, (𝐺‘∅)⟩} Fn {∅})
71, 6mpan 414 . . . 4 ((𝐺‘∅) ∈ 𝑉 → {⟨∅, (𝐺‘∅)⟩} Fn {∅})
8 fvsng 5380 . . . . . . 7 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘∅))
91, 8mpan 414 . . . . . 6 ((𝐺‘∅) ∈ 𝑉 → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘∅))
10 res0 4634 . . . . . . 7 ({⟨∅, (𝐺‘∅)⟩} ↾ ∅) = ∅
1110fveq2i 5201 . . . . . 6 (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)) = (𝐺‘∅)
129, 11syl6eqr 2131 . . . . 5 ((𝐺‘∅) ∈ 𝑉 → ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
13 fveq2 5198 . . . . . . 7 (𝑦 = ∅ → ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = ({⟨∅, (𝐺‘∅)⟩}‘∅))
14 reseq2 4625 . . . . . . . 8 (𝑦 = ∅ → ({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦) = ({⟨∅, (𝐺‘∅)⟩} ↾ ∅))
1514fveq2d 5202 . . . . . . 7 (𝑦 = ∅ → (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
1613, 15eqeq12d 2095 . . . . . 6 (𝑦 = ∅ → (({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅))))
171, 16ralsn 3436 . . . . 5 (∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘∅) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ ∅)))
1812, 17sylibr 132 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))
19 suc0 4166 . . . . . 6 suc ∅ = {∅}
20 0elon 4147 . . . . . . 7 ∅ ∈ On
2120onsuci 4260 . . . . . 6 suc ∅ ∈ On
2219, 21eqeltrri 2152 . . . . 5 {∅} ∈ On
23 fneq2 5008 . . . . . . 7 (𝑥 = {∅} → ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ↔ {⟨∅, (𝐺‘∅)⟩} Fn {∅}))
24 raleq 2549 . . . . . . 7 (𝑥 = {∅} → (∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)) ↔ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
2523, 24anbi12d 456 . . . . . 6 (𝑥 = {∅} → (({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))) ↔ ({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
2625rspcev 2701 . . . . 5 (({∅} ∈ On ∧ ({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
2722, 26mpan 414 . . . 4 (({⟨∅, (𝐺‘∅)⟩} Fn {∅} ∧ ∀𝑦 ∈ {∅} ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))) → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
287, 18, 27syl2anc 403 . . 3 ((𝐺‘∅) ∈ 𝑉 → ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
29 snexg 3956 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ V → {⟨∅, (𝐺‘∅)⟩} ∈ V)
30 eleq2 2142 . . . . . . 7 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ↔ ⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩}))
31 fneq1 5007 . . . . . . . . 9 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓 Fn 𝑥 ↔ {⟨∅, (𝐺‘∅)⟩} Fn 𝑥))
32 fveq1 5197 . . . . . . . . . . 11 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓𝑦) = ({⟨∅, (𝐺‘∅)⟩}‘𝑦))
33 reseq1 4624 . . . . . . . . . . . 12 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝑓𝑦) = ({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))
3433fveq2d 5202 . . . . . . . . . . 11 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (𝐺‘(𝑓𝑦)) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))
3532, 34eqeq12d 2095 . . . . . . . . . 10 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
3635ralbidv 2368 . . . . . . . . 9 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))
3731, 36anbi12d 456 . . . . . . . 8 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
3837rexbidv 2369 . . . . . . 7 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))))
3930, 38anbi12d 456 . . . . . 6 (𝑓 = {⟨∅, (𝐺‘∅)⟩} → ((⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))) ↔ (⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦))))))
4039spcegv 2686 . . . . 5 ({⟨∅, (𝐺‘∅)⟩} ∈ V → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))))
413, 29, 403syl 17 . . . 4 ((𝐺‘∅) ∈ 𝑉 → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))))
42 tfr.1 . . . . . 6 𝐹 = recs(𝐺)
4342eleq2i 2145 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 ↔ ⟨∅, (𝐺‘∅)⟩ ∈ recs(𝐺))
44 df-recs 5943 . . . . . 6 recs(𝐺) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
4544eleq2i 2145 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ recs(𝐺) ↔ ⟨∅, (𝐺‘∅)⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))})
46 eluniab 3613 . . . . 5 (⟨∅, (𝐺‘∅)⟩ ∈ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} ↔ ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
4743, 45, 463bitri 204 . . . 4 (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 ↔ ∃𝑓(⟨∅, (𝐺‘∅)⟩ ∈ 𝑓 ∧ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))))
4841, 47syl6ibr 160 . . 3 ((𝐺‘∅) ∈ 𝑉 → ((⟨∅, (𝐺‘∅)⟩ ∈ {⟨∅, (𝐺‘∅)⟩} ∧ ∃𝑥 ∈ On ({⟨∅, (𝐺‘∅)⟩} Fn 𝑥 ∧ ∀𝑦𝑥 ({⟨∅, (𝐺‘∅)⟩}‘𝑦) = (𝐺‘({⟨∅, (𝐺‘∅)⟩} ↾ 𝑦)))) → ⟨∅, (𝐺‘∅)⟩ ∈ 𝐹))
495, 28, 48mp2and 423 . 2 ((𝐺‘∅) ∈ 𝑉 → ⟨∅, (𝐺‘∅)⟩ ∈ 𝐹)
50 opeldmg 4558 . . . . 5 ((∅ ∈ V ∧ (𝐺‘∅) ∈ 𝑉) → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → ∅ ∈ dom 𝐹))
511, 50mpan 414 . . . 4 ((𝐺‘∅) ∈ 𝑉 → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → ∅ ∈ dom 𝐹))
5242tfr2a 5959 . . . 4 (∅ ∈ dom 𝐹 → (𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅)))
5351, 52syl6 33 . . 3 ((𝐺‘∅) ∈ 𝑉 → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → (𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅))))
54 res0 4634 . . . . 5 (𝐹 ↾ ∅) = ∅
5554fveq2i 5201 . . . 4 (𝐺‘(𝐹 ↾ ∅)) = (𝐺‘∅)
5655eqeq2i 2091 . . 3 ((𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅)) ↔ (𝐹‘∅) = (𝐺‘∅))
5753, 56syl6ib 159 . 2 ((𝐺‘∅) ∈ 𝑉 → (⟨∅, (𝐺‘∅)⟩ ∈ 𝐹 → (𝐹‘∅) = (𝐺‘∅)))
5849, 57mpd 13 1 ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  {cab 2067  wral 2348  wrex 2349  Vcvv 2601  c0 3251  {csn 3398  cop 3401   cuni 3601  Oncon0 4118  suc csuc 4120  dom cdm 4363  cres 4365   Fn wfn 4917  cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-recs 5943
This theorem is referenced by:  rdg0  5997  frec0g  6006
  Copyright terms: Public domain W3C validator