ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq2i Unicode version

Theorem eqeq2i 2091
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
eqeq2i.1  |-  A  =  B
Assertion
Ref Expression
eqeq2i  |-  ( C  =  A  <->  C  =  B )

Proof of Theorem eqeq2i
StepHypRef Expression
1 eqeq2i.1 . 2  |-  A  =  B
2 eqeq2 2090 . 2  |-  ( A  =  B  ->  ( C  =  A  <->  C  =  B ) )
31, 2ax-mp 7 1  |-  ( C  =  A  <->  C  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074
This theorem is referenced by:  eqtri  2101  rabid2  2530  dfss2  2988  equncom  3117  preq12b  3562  preqsn  3567  opeqpr  4008  orddif  4290  dfrel4v  4792  dfiota2  4888  funopg  4954  fnressn  5370  fressnfv  5371  acexmidlemph  5525  fnovim  5629  tpossym  5914  tfr0  5960  qsid  6194  recidpirq  7026  axprecex  7046  negeq0  7362  muleqadd  7758  cjne0  9795  sqrt00  9926  sqrtmsq2i  10021
  Copyright terms: Public domain W3C validator