ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erovlem GIF version

Theorem erovlem 6221
Description: Lemma for eroprf 6222. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 𝐽 = (𝐴 / 𝑅)
eropr.2 𝐾 = (𝐵 / 𝑆)
eropr.3 (𝜑𝑇𝑍)
eropr.4 (𝜑𝑅 Er 𝑈)
eropr.5 (𝜑𝑆 Er 𝑉)
eropr.6 (𝜑𝑇 Er 𝑊)
eropr.7 (𝜑𝐴𝑈)
eropr.8 (𝜑𝐵𝑉)
eropr.9 (𝜑𝐶𝑊)
eropr.10 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
eropr.11 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
eropr.12 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
Assertion
Ref Expression
erovlem (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧,𝐴   𝐵,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐽,𝑝,𝑞,𝑥,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐾,𝑝,𝑞,𝑥,𝑦,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   + ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑈(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝐽(𝑢,𝑡,𝑠,𝑟)   𝐾(𝑢,𝑡,𝑠,𝑟)   𝑉(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑍(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem erovlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . . . . . 8 (((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
21reximi 2458 . . . . . . 7 (∃𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
32reximi 2458 . . . . . 6 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
4 eropr.1 . . . . . . . . . 10 𝐽 = (𝐴 / 𝑅)
54eleq2i 2145 . . . . . . . . 9 (𝑥𝐽𝑥 ∈ (𝐴 / 𝑅))
6 vex 2604 . . . . . . . . . 10 𝑥 ∈ V
76elqs 6180 . . . . . . . . 9 (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑝𝐴 𝑥 = [𝑝]𝑅)
85, 7bitri 182 . . . . . . . 8 (𝑥𝐽 ↔ ∃𝑝𝐴 𝑥 = [𝑝]𝑅)
9 eropr.2 . . . . . . . . . 10 𝐾 = (𝐵 / 𝑆)
109eleq2i 2145 . . . . . . . . 9 (𝑦𝐾𝑦 ∈ (𝐵 / 𝑆))
11 vex 2604 . . . . . . . . . 10 𝑦 ∈ V
1211elqs 6180 . . . . . . . . 9 (𝑦 ∈ (𝐵 / 𝑆) ↔ ∃𝑞𝐵 𝑦 = [𝑞]𝑆)
1310, 12bitri 182 . . . . . . . 8 (𝑦𝐾 ↔ ∃𝑞𝐵 𝑦 = [𝑞]𝑆)
148, 13anbi12i 447 . . . . . . 7 ((𝑥𝐽𝑦𝐾) ↔ (∃𝑝𝐴 𝑥 = [𝑝]𝑅 ∧ ∃𝑞𝐵 𝑦 = [𝑞]𝑆))
15 reeanv 2523 . . . . . . 7 (∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ↔ (∃𝑝𝐴 𝑥 = [𝑝]𝑅 ∧ ∃𝑞𝐵 𝑦 = [𝑞]𝑆))
1614, 15bitr4i 185 . . . . . 6 ((𝑥𝐽𝑦𝐾) ↔ ∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
173, 16sylibr 132 . . . . 5 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (𝑥𝐽𝑦𝐾))
1817pm4.71ri 384 . . . 4 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((𝑥𝐽𝑦𝐾) ∧ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
19 eropr.3 . . . . . . . 8 (𝜑𝑇𝑍)
20 eropr.4 . . . . . . . 8 (𝜑𝑅 Er 𝑈)
21 eropr.5 . . . . . . . 8 (𝜑𝑆 Er 𝑉)
22 eropr.6 . . . . . . . 8 (𝜑𝑇 Er 𝑊)
23 eropr.7 . . . . . . . 8 (𝜑𝐴𝑈)
24 eropr.8 . . . . . . . 8 (𝜑𝐵𝑉)
25 eropr.9 . . . . . . . 8 (𝜑𝐶𝑊)
26 eropr.10 . . . . . . . 8 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
27 eropr.11 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
284, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27eroveu 6220 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
29 iota1 4901 . . . . . . 7 (∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
3028, 29syl 14 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
31 eqcom 2083 . . . . . 6 ((℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3230, 31syl6bb 194 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3332pm5.32da 439 . . . 4 (𝜑 → (((𝑥𝐽𝑦𝐾) ∧ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3418, 33syl5bb 190 . . 3 (𝜑 → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3534oprabbidv 5579 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))})
36 eropr.12 . 2 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
37 df-mpt2 5537 . . 3 (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
38 nfv 1461 . . . 4 𝑤((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
39 nfv 1461 . . . . 5 𝑧(𝑥𝐽𝑦𝐾)
40 nfiota1 4889 . . . . . 6 𝑧(℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4140nfeq2 2230 . . . . 5 𝑧 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4239, 41nfan 1497 . . . 4 𝑧((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
43 eqeq1 2087 . . . . 5 (𝑧 = 𝑤 → (𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
4443anbi2d 451 . . . 4 (𝑧 = 𝑤 → (((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
4538, 42, 44cbvoprab3 5600 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4637, 45eqtr4i 2104 . 2 (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4735, 36, 463eqtr4g 2138 1 (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  ∃!weu 1941  wrex 2349  wss 2973   class class class wbr 3785   × cxp 4361  cio 4885  wf 4918  (class class class)co 5532  {coprab 5533  cmpt2 5534   Er wer 6126  [cec 6127   / cqs 6128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-er 6129  df-ec 6131  df-qs 6135
This theorem is referenced by:  eroprf  6222
  Copyright terms: Public domain W3C validator