ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oabexg GIF version

Theorem f1oabexg 5158
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
f1oabexg.1 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
Assertion
Ref Expression
f1oabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝐹(𝑓)

Proof of Theorem f1oabexg
StepHypRef Expression
1 f1oabexg.1 . 2 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
2 f1of 5146 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
32anim1i 333 . . . 4 ((𝑓:𝐴1-1-onto𝐵𝜑) → (𝑓:𝐴𝐵𝜑))
43ss2abi 3066 . . 3 {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
5 eqid 2081 . . . 4 {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} = {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
65fabexg 5097 . . 3 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V)
7 ssexg 3917 . . 3 (({𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
84, 6, 7sylancr 405 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
91, 8syl5eqel 2165 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  {cab 2067  Vcvv 2601  wss 2973  wf 4918  1-1-ontowf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-f1o 4929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator