![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fssres2 | GIF version |
Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.) |
Ref | Expression |
---|---|
fssres2 | ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssres 5086 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵) | |
2 | resabs1 4658 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → ((𝐹 ↾ 𝐴) ↾ 𝐶) = (𝐹 ↾ 𝐶)) | |
3 | 2 | feq1d 5054 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵 ↔ (𝐹 ↾ 𝐶):𝐶⟶𝐵)) |
4 | 3 | adantl 271 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵 ↔ (𝐹 ↾ 𝐶):𝐶⟶𝐵)) |
5 | 1, 4 | mpbid 145 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ⊆ wss 2973 ↾ cres 4365 ⟶wf 4918 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-fun 4924 df-fn 4925 df-f 4926 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |