![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fun11uni | GIF version |
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
fun11uni | ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ∪ 𝐴 ∧ Fun ◡∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 107 | . . . . 5 ⊢ ((Fun 𝑓 ∧ Fun ◡𝑓) → Fun 𝑓) | |
2 | 1 | anim1i 333 | . . . 4 ⊢ (((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun 𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓))) |
3 | 2 | ralimi 2426 | . . 3 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → ∀𝑓 ∈ 𝐴 (Fun 𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓))) |
4 | fununi 4987 | . . 3 ⊢ (∀𝑓 ∈ 𝐴 (Fun 𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ∪ 𝐴) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ∪ 𝐴) |
6 | simpr 108 | . . . . 5 ⊢ ((Fun 𝑓 ∧ Fun ◡𝑓) → Fun ◡𝑓) | |
7 | 6 | anim1i 333 | . . . 4 ⊢ (((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓))) |
8 | 7 | ralimi 2426 | . . 3 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → ∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓))) |
9 | funcnvuni 4988 | . . 3 ⊢ (∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) |
11 | 5, 10 | jca 300 | 1 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ∪ 𝐴 ∧ Fun ◡∪ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∨ wo 661 ∀wral 2348 ⊆ wss 2973 ∪ cuni 3601 ◡ccnv 4362 Fun wfun 4916 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 |
This theorem is referenced by: fun11iun 5167 |
Copyright terms: Public domain | W3C validator |