ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2cnv GIF version

Theorem fun2cnv 4983
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
fun2cnv (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fun2cnv
StepHypRef Expression
1 funcnv2 4979 . 2 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑦𝐴𝑥)
2 vex 2604 . . . . 5 𝑦 ∈ V
3 vex 2604 . . . . 5 𝑥 ∈ V
42, 3brcnv 4536 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
54mobii 1978 . . 3 (∃*𝑦 𝑦𝐴𝑥 ↔ ∃*𝑦 𝑥𝐴𝑦)
65albii 1399 . 2 (∀𝑥∃*𝑦 𝑦𝐴𝑥 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
71, 6bitri 182 1 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
Colors of variables: wff set class
Syntax hints:  wb 103  wal 1282  ∃*wmo 1942   class class class wbr 3785  ccnv 4362  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by:  svrelfun  4984  fun11  4986
  Copyright terms: Public domain W3C validator