ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdf GIF version

Theorem fvmptdf 5279
Description: Alternate deduction version of fvmpt 5270, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdf.1 (𝜑𝐴𝐷)
fvmptdf.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptdf.3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
fvmptdf.4 𝑥𝐹
fvmptdf.5 𝑥𝜓
Assertion
Ref Expression
fvmptdf (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptdf
StepHypRef Expression
1 nfv 1461 . 2 𝑥𝜑
2 fvmptdf.4 . . . 4 𝑥𝐹
3 nfmpt1 3871 . . . 4 𝑥(𝑥𝐷𝐵)
42, 3nfeq 2226 . . 3 𝑥 𝐹 = (𝑥𝐷𝐵)
5 fvmptdf.5 . . 3 𝑥𝜓
64, 5nfim 1504 . 2 𝑥(𝐹 = (𝑥𝐷𝐵) → 𝜓)
7 fvmptdf.1 . . . 4 (𝜑𝐴𝐷)
8 elex 2610 . . . 4 (𝐴𝐷𝐴 ∈ V)
97, 8syl 14 . . 3 (𝜑𝐴 ∈ V)
10 isset 2605 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
119, 10sylib 120 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
12 fveq1 5197 . . 3 (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
13 simpr 108 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
1413fveq2d 5202 . . . . . 6 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝑥) = ((𝑥𝐷𝐵)‘𝐴))
157adantr 270 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → 𝐴𝐷)
1613, 15eqeltrd 2155 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥𝐷)
17 fvmptdf.2 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
18 eqid 2081 . . . . . . . 8 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1918fvmpt2 5275 . . . . . . 7 ((𝑥𝐷𝐵𝑉) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
2016, 17, 19syl2anc 403 . . . . . 6 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
2114, 20eqtr3d 2115 . . . . 5 ((𝜑𝑥 = 𝐴) → ((𝑥𝐷𝐵)‘𝐴) = 𝐵)
2221eqeq2d 2092 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴) ↔ (𝐹𝐴) = 𝐵))
23 fvmptdf.3 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
2422, 23sylbid 148 . . 3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴) → 𝜓))
2512, 24syl5 32 . 2 ((𝜑𝑥 = 𝐴) → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
261, 6, 11, 25exlimdd 1793 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wnf 1389  wex 1421  wcel 1433  wnfc 2206  Vcvv 2601  cmpt 3839  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930
This theorem is referenced by:  fvmptdv  5280
  Copyright terms: Public domain W3C validator