![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptdf | GIF version |
Description: Alternate deduction version of fvmpt 5270, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
fvmptdf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
fvmptdf.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) |
fvmptdf.4 | ⊢ Ⅎ𝑥𝐹 |
fvmptdf.5 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
fvmptdf | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1461 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | fvmptdf.4 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nfmpt1 3871 | . . . 4 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
4 | 2, 3 | nfeq 2226 | . . 3 ⊢ Ⅎ𝑥 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
5 | fvmptdf.5 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
6 | 4, 5 | nfim 1504 | . 2 ⊢ Ⅎ𝑥(𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓) |
7 | fvmptdf.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
8 | elex 2610 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ V) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
10 | isset 2605 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
11 | 9, 10 | sylib 120 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
12 | fveq1 5197 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
13 | simpr 108 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
14 | 13 | fveq2d 5202 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
15 | 7 | adantr 270 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐷) |
16 | 13, 15 | eqeltrd 2155 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 ∈ 𝐷) |
17 | fvmptdf.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
18 | eqid 2081 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
19 | 18 | fvmpt2 5275 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = 𝐵) |
20 | 16, 17, 19 | syl2anc 403 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = 𝐵) |
21 | 14, 20 | eqtr3d 2115 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐵) |
22 | 21 | eqeq2d 2092 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) ↔ (𝐹‘𝐴) = 𝐵)) |
23 | fvmptdf.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) | |
24 | 22, 23 | sylbid 148 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) → 𝜓)) |
25 | 12, 24 | syl5 32 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
26 | 1, 6, 11, 25 | exlimdd 1793 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 Ⅎwnf 1389 ∃wex 1421 ∈ wcel 1433 Ⅎwnfc 2206 Vcvv 2601 ↦ cmpt 3839 ‘cfv 4922 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 |
This theorem is referenced by: fvmptdv 5280 |
Copyright terms: Public domain | W3C validator |