![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isarep1 | GIF version |
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
isarep1 | ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . 3 ⊢ 𝑏 ∈ V | |
2 | 1 | elima 4693 | . 2 ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑧 ∈ 𝐴 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏) |
3 | df-br 3786 | . . . 4 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ 〈𝑧, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
4 | opelopabsb 4015 | . . . 4 ⊢ (〈𝑧, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
5 | sbsbc 2819 | . . . . . 6 ⊢ ([𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑) | |
6 | 5 | sbbii 1688 | . . . . 5 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
7 | sbsbc 2819 | . . . . 5 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
8 | 6, 7 | bitr2i 183 | . . . 4 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
9 | 3, 4, 8 | 3bitri 204 | . . 3 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
10 | 9 | rexbii 2373 | . 2 ⊢ (∃𝑧 ∈ 𝐴 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
11 | nfs1v 1856 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥][𝑏 / 𝑦]𝜑 | |
12 | nfv 1461 | . . 3 ⊢ Ⅎ𝑧[𝑏 / 𝑦]𝜑 | |
13 | sbequ12r 1695 | . . 3 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | |
14 | 11, 12, 13 | cbvrex 2574 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
15 | 2, 10, 14 | 3bitri 204 | 1 ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∈ wcel 1433 [wsb 1685 ∃wrex 2349 [wsbc 2815 〈cop 3401 class class class wbr 3785 {copab 3838 “ cima 4366 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |