![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isarep2 | GIF version |
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5004. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
isarep2.1 | ⊢ 𝐴 ∈ V |
isarep2.2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) |
Ref | Expression |
---|---|
isarep2 | ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 4661 | . . . 4 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) | |
2 | resopab 4672 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | imaeq1i 4685 | . . . 4 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
4 | 1, 3 | eqtr3i 2103 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
5 | funopab 4955 | . . . . 5 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | isarep2.2 | . . . . . . . 8 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) | |
7 | 6 | rspec 2415 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
8 | nfv 1461 | . . . . . . . 8 ⊢ Ⅎ𝑧𝜑 | |
9 | 8 | mo3 1995 | . . . . . . 7 ⊢ (∃*𝑦𝜑 ↔ ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
10 | 7, 9 | sylibr 132 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) |
11 | moanimv 2016 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
12 | 10, 11 | mpbir 144 | . . . . 5 ⊢ ∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
13 | 5, 12 | mpgbir 1382 | . . . 4 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
14 | isarep2.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
15 | 14 | funimaex 5004 | . . . 4 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V) |
16 | 13, 15 | ax-mp 7 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V |
17 | 4, 16 | eqeltri 2151 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ∈ V |
18 | 17 | isseti 2607 | 1 ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 ∃wex 1421 ∈ wcel 1433 [wsb 1685 ∃*wmo 1942 ∀wral 2348 Vcvv 2601 {copab 3838 ↾ cres 4365 “ cima 4366 Fun wfun 4916 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-fun 4924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |