ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moim Unicode version

Theorem moim 2005
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moim  |-  ( A. x ( ph  ->  ps )  ->  ( E* x ps  ->  E* x ph ) )

Proof of Theorem moim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfa1 1474 . . 3  |-  F/ x A. x ( ph  ->  ps )
2 ax-4 1440 . . . . . 6  |-  ( A. x ( ph  ->  ps )  ->  ( ph  ->  ps ) )
3 spsbim 1764 . . . . . 6  |-  ( A. x ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) )
42, 3anim12d 328 . . . . 5  |-  ( A. x ( ph  ->  ps )  ->  ( ( ph  /\  [ y  /  x ] ph )  -> 
( ps  /\  [
y  /  x ] ps ) ) )
54imim1d 74 . . . 4  |-  ( A. x ( ph  ->  ps )  ->  ( (
( ps  /\  [
y  /  x ] ps )  ->  x  =  y )  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
65alimdv 1800 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( A. y ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )  ->  A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
71, 6alimd 1454 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( A. x A. y ( ( ps  /\  [ y  /  x ] ps )  ->  x  =  y )  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
8 ax-17 1459 . . 3  |-  ( ps 
->  A. y ps )
98mo3h 1994 . 2  |-  ( E* x ps  <->  A. x A. y ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )
)
10 ax-17 1459 . . 3  |-  ( ph  ->  A. y ph )
1110mo3h 1994 . 2  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
127, 9, 113imtr4g 203 1  |-  ( A. x ( ph  ->  ps )  ->  ( E* x ps  ->  E* x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282   [wsb 1685   E*wmo 1942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945
This theorem is referenced by:  moimi  2006  euimmo  2008  moexexdc  2025  euexex  2026  rmoim  2791  rmoimi2  2793  disjss1  3772  reusv1  4208  funmo  4937
  Copyright terms: Public domain W3C validator