ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmo GIF version

Theorem funmo 4937
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
funmo (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funmo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffun6 4936 . . . . . 6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
21simplbi 268 . . . . 5 (Fun 𝐹 → Rel 𝐹)
3 brrelex 4400 . . . . . 6 ((Rel 𝐹𝐴𝐹𝑦) → 𝐴 ∈ V)
43ex 113 . . . . 5 (Rel 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
52, 4syl 14 . . . 4 (Fun 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
65ancrd 319 . . 3 (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
76alrimiv 1795 . 2 (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
8 breq1 3788 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
98mobidv 1977 . . . . . 6 (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦))
109imbi2d 228 . . . . 5 (𝑥 = 𝐴 → ((Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)))
111simprbi 269 . . . . . 6 (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
121119.21bi 1490 . . . . 5 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
1310, 12vtoclg 2658 . . . 4 (𝐴 ∈ V → (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦))
1413com12 30 . . 3 (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
15 moanimv 2016 . . 3 (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
1614, 15sylibr 132 . 2 (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦))
17 moim 2005 . 2 (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦))
187, 16, 17sylc 61 1 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wcel 1433  ∃*wmo 1942  Vcvv 2601   class class class wbr 3785  Rel wrel 4368  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by:  funeu  4946  funco  4960  imadif  4999  fneu  5023  dff3im  5333  shftfn  9712
  Copyright terms: Public domain W3C validator