![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0sscn | GIF version |
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0sscn | ⊢ ℕ0 ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 8292 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | ax-resscn 7068 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3008 | 1 ⊢ ℕ0 ⊆ ℂ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 2973 ℂcc 6979 ℝcr 6980 ℕ0cn0 8288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 ax-1re 7070 ax-addrcl 7073 ax-rnegex 7085 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-int 3637 df-inn 8040 df-n0 8289 |
This theorem is referenced by: nn0cn 8298 nn0expcl 9490 |
Copyright terms: Public domain | W3C validator |