ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc GIF version

Theorem nn0suc 4345
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nn0suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2087 . . 3 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
2 eqeq1 2087 . . . 4 (𝑦 = ∅ → (𝑦 = suc 𝑥 ↔ ∅ = suc 𝑥))
32rexbidv 2369 . . 3 (𝑦 = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω ∅ = suc 𝑥))
41, 3orbi12d 739 . 2 (𝑦 = ∅ → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (∅ = ∅ ∨ ∃𝑥 ∈ ω ∅ = suc 𝑥)))
5 eqeq1 2087 . . 3 (𝑦 = 𝑧 → (𝑦 = ∅ ↔ 𝑧 = ∅))
6 eqeq1 2087 . . . 4 (𝑦 = 𝑧 → (𝑦 = suc 𝑥𝑧 = suc 𝑥))
76rexbidv 2369 . . 3 (𝑦 = 𝑧 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑧 = suc 𝑥))
85, 7orbi12d 739 . 2 (𝑦 = 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (𝑧 = ∅ ∨ ∃𝑥 ∈ ω 𝑧 = suc 𝑥)))
9 eqeq1 2087 . . 3 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
10 eqeq1 2087 . . . 4 (𝑦 = suc 𝑧 → (𝑦 = suc 𝑥 ↔ suc 𝑧 = suc 𝑥))
1110rexbidv 2369 . . 3 (𝑦 = suc 𝑧 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥))
129, 11orbi12d 739 . 2 (𝑦 = suc 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)))
13 eqeq1 2087 . . 3 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
14 eqeq1 2087 . . . 4 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
1514rexbidv 2369 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
1613, 15orbi12d 739 . 2 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
17 eqid 2081 . . 3 ∅ = ∅
1817orci 682 . 2 (∅ = ∅ ∨ ∃𝑥 ∈ ω ∅ = suc 𝑥)
19 eqid 2081 . . . . 5 suc 𝑧 = suc 𝑧
20 suceq 4157 . . . . . . 7 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2120eqeq2d 2092 . . . . . 6 (𝑥 = 𝑧 → (suc 𝑧 = suc 𝑥 ↔ suc 𝑧 = suc 𝑧))
2221rspcev 2701 . . . . 5 ((𝑧 ∈ ω ∧ suc 𝑧 = suc 𝑧) → ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)
2319, 22mpan2 415 . . . 4 (𝑧 ∈ ω → ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)
2423olcd 685 . . 3 (𝑧 ∈ ω → (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥))
2524a1d 22 . 2 (𝑧 ∈ ω → ((𝑧 = ∅ ∨ ∃𝑥 ∈ ω 𝑧 = suc 𝑥) → (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)))
264, 8, 12, 16, 18, 25finds 4341 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 661   = wceq 1284  wcel 1433  wrex 2349  c0 3251  suc csuc 4120  ωcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332
This theorem is referenced by:  nnsuc  4356  nneneq  6343  phpm  6351  fin0  6369  fin0or  6370  diffisn  6377
  Copyright terms: Public domain W3C validator