ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn GIF version

Theorem elnn 4346
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
elnn ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)

Proof of Theorem elnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3020 . . 3 (𝑦 = ∅ → (𝑦 ⊆ ω ↔ ∅ ⊆ ω))
2 sseq1 3020 . . 3 (𝑦 = 𝑥 → (𝑦 ⊆ ω ↔ 𝑥 ⊆ ω))
3 sseq1 3020 . . 3 (𝑦 = suc 𝑥 → (𝑦 ⊆ ω ↔ suc 𝑥 ⊆ ω))
4 sseq1 3020 . . 3 (𝑦 = 𝐵 → (𝑦 ⊆ ω ↔ 𝐵 ⊆ ω))
5 0ss 3282 . . 3 ∅ ⊆ ω
6 unss 3146 . . . . . 6 ((𝑥 ⊆ ω ∧ {𝑥} ⊆ ω) ↔ (𝑥 ∪ {𝑥}) ⊆ ω)
7 vex 2604 . . . . . . . 8 𝑥 ∈ V
87snss 3516 . . . . . . 7 (𝑥 ∈ ω ↔ {𝑥} ⊆ ω)
98anbi2i 444 . . . . . 6 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ (𝑥 ⊆ ω ∧ {𝑥} ⊆ ω))
10 df-suc 4126 . . . . . . 7 suc 𝑥 = (𝑥 ∪ {𝑥})
1110sseq1i 3023 . . . . . 6 (suc 𝑥 ⊆ ω ↔ (𝑥 ∪ {𝑥}) ⊆ ω)
126, 9, 113bitr4i 210 . . . . 5 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ suc 𝑥 ⊆ ω)
1312biimpi 118 . . . 4 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) → suc 𝑥 ⊆ ω)
1413expcom 114 . . 3 (𝑥 ∈ ω → (𝑥 ⊆ ω → suc 𝑥 ⊆ ω))
151, 2, 3, 4, 5, 14finds 4341 . 2 (𝐵 ∈ ω → 𝐵 ⊆ ω)
16 ssel2 2994 . . 3 ((𝐵 ⊆ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
1716ancoms 264 . 2 ((𝐴𝐵𝐵 ⊆ ω) → 𝐴 ∈ ω)
1815, 17sylan2 280 1 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  cun 2971  wss 2973  c0 3251  {csn 3398  suc csuc 4120  ωcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332
This theorem is referenced by:  ordom  4347  peano2b  4355  nndifsnid  6103  nnaordi  6104  nnmordi  6112  fidceq  6354  nnwetri  6382
  Copyright terms: Public domain W3C validator