ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc Unicode version

Theorem nn0suc 4345
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem nn0suc
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2087 . . 3  |-  ( y  =  (/)  ->  ( y  =  (/)  <->  (/)  =  (/) ) )
2 eqeq1 2087 . . . 4  |-  ( y  =  (/)  ->  ( y  =  suc  x  <->  (/)  =  suc  x ) )
32rexbidv 2369 . . 3  |-  ( y  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  (/)  =  suc  x
) )
41, 3orbi12d 739 . 2  |-  ( y  =  (/)  ->  ( ( y  =  (/)  \/  E. x  e.  om  y  =  suc  x )  <->  ( (/)  =  (/)  \/ 
E. x  e.  om  (/)  =  suc  x ) ) )
5 eqeq1 2087 . . 3  |-  ( y  =  z  ->  (
y  =  (/)  <->  z  =  (/) ) )
6 eqeq1 2087 . . . 4  |-  ( y  =  z  ->  (
y  =  suc  x  <->  z  =  suc  x ) )
76rexbidv 2369 . . 3  |-  ( y  =  z  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  z  =  suc  x ) )
85, 7orbi12d 739 . 2  |-  ( y  =  z  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x ) ) )
9 eqeq1 2087 . . 3  |-  ( y  =  suc  z  -> 
( y  =  (/)  <->  suc  z  =  (/) ) )
10 eqeq1 2087 . . . 4  |-  ( y  =  suc  z  -> 
( y  =  suc  x 
<->  suc  z  =  suc  x ) )
1110rexbidv 2369 . . 3  |-  ( y  =  suc  z  -> 
( E. x  e. 
om  y  =  suc  x 
<->  E. x  e.  om  suc  z  =  suc  x ) )
129, 11orbi12d 739 . 2  |-  ( y  =  suc  z  -> 
( ( y  =  (/)  \/  E. x  e. 
om  y  =  suc  x )  <->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
13 eqeq1 2087 . . 3  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
14 eqeq1 2087 . . . 4  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
1514rexbidv 2369 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  A  =  suc  x ) )
1613, 15orbi12d 739 . 2  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
17 eqid 2081 . . 3  |-  (/)  =  (/)
1817orci 682 . 2  |-  ( (/)  =  (/)  \/  E. x  e.  om  (/)  =  suc  x
)
19 eqid 2081 . . . . 5  |-  suc  z  =  suc  z
20 suceq 4157 . . . . . . 7  |-  ( x  =  z  ->  suc  x  =  suc  z )
2120eqeq2d 2092 . . . . . 6  |-  ( x  =  z  ->  ( suc  z  =  suc  x 
<->  suc  z  =  suc  z ) )
2221rspcev 2701 . . . . 5  |-  ( ( z  e.  om  /\  suc  z  =  suc  z )  ->  E. x  e.  om  suc  z  =  suc  x )
2319, 22mpan2 415 . . . 4  |-  ( z  e.  om  ->  E. x  e.  om  suc  z  =  suc  x )
2423olcd 685 . . 3  |-  ( z  e.  om  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) )
2524a1d 22 . 2  |-  ( z  e.  om  ->  (
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x )  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
264, 8, 12, 16, 18, 25finds 4341 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 661    = wceq 1284    e. wcel 1433   E.wrex 2349   (/)c0 3251   suc csuc 4120   omcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332
This theorem is referenced by:  nnsuc  4356  nneneq  6343  phpm  6351  fin0  6369  fin0or  6370  diffisn  6377
  Copyright terms: Public domain W3C validator