![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndceq0 | GIF version |
Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
Ref | Expression |
---|---|
nndceq0 | ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2087 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
2 | 1 | notbid 624 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑥 = ∅ ↔ ¬ ∅ = ∅)) |
3 | 1, 2 | orbi12d 739 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (∅ = ∅ ∨ ¬ ∅ = ∅))) |
4 | eqeq1 2087 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
5 | 4 | notbid 624 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ 𝑦 = ∅)) |
6 | 4, 5 | orbi12d 739 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝑦 = ∅ ∨ ¬ 𝑦 = ∅))) |
7 | eqeq1 2087 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
8 | 7 | notbid 624 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ suc 𝑦 = ∅)) |
9 | 7, 8 | orbi12d 739 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
10 | eqeq1 2087 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
11 | 10 | notbid 624 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 = ∅ ↔ ¬ 𝐴 = ∅)) |
12 | 10, 11 | orbi12d 739 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))) |
13 | eqid 2081 | . . . 4 ⊢ ∅ = ∅ | |
14 | 13 | orci 682 | . . 3 ⊢ (∅ = ∅ ∨ ¬ ∅ = ∅) |
15 | peano3 4337 | . . . . . 6 ⊢ (𝑦 ∈ ω → suc 𝑦 ≠ ∅) | |
16 | 15 | neneqd 2266 | . . . . 5 ⊢ (𝑦 ∈ ω → ¬ suc 𝑦 = ∅) |
17 | 16 | olcd 685 | . . . 4 ⊢ (𝑦 ∈ ω → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅)) |
18 | 17 | a1d 22 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ¬ 𝑦 = ∅) → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
19 | 3, 6, 9, 12, 14, 18 | finds 4341 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
20 | df-dc 776 | . 2 ⊢ (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) | |
21 | 19, 20 | sylibr 132 | 1 ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 661 DECID wdc 775 = wceq 1284 ∈ wcel 1433 ∅c0 3251 suc csuc 4120 ωcom 4331 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-suc 4126 df-iom 4332 |
This theorem is referenced by: elni2 6504 indpi 6532 |
Copyright terms: Public domain | W3C validator |