| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndceq0 | Unicode version | ||
| Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| nndceq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2087 |
. . . 4
| |
| 2 | 1 | notbid 624 |
. . . 4
|
| 3 | 1, 2 | orbi12d 739 |
. . 3
|
| 4 | eqeq1 2087 |
. . . 4
| |
| 5 | 4 | notbid 624 |
. . . 4
|
| 6 | 4, 5 | orbi12d 739 |
. . 3
|
| 7 | eqeq1 2087 |
. . . 4
| |
| 8 | 7 | notbid 624 |
. . . 4
|
| 9 | 7, 8 | orbi12d 739 |
. . 3
|
| 10 | eqeq1 2087 |
. . . 4
| |
| 11 | 10 | notbid 624 |
. . . 4
|
| 12 | 10, 11 | orbi12d 739 |
. . 3
|
| 13 | eqid 2081 |
. . . 4
| |
| 14 | 13 | orci 682 |
. . 3
|
| 15 | peano3 4337 |
. . . . . 6
| |
| 16 | 15 | neneqd 2266 |
. . . . 5
|
| 17 | 16 | olcd 685 |
. . . 4
|
| 18 | 17 | a1d 22 |
. . 3
|
| 19 | 3, 6, 9, 12, 14, 18 | finds 4341 |
. 2
|
| 20 | df-dc 776 |
. 2
| |
| 21 | 19, 20 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-suc 4126 df-iom 4332 |
| This theorem is referenced by: elni2 6504 indpi 6532 |
| Copyright terms: Public domain | W3C validator |