ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsseleq GIF version

Theorem nnsseleq 6102
Description: For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
Assertion
Ref Expression
nnsseleq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem nnsseleq
StepHypRef Expression
1 nntri1 6097 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2 nntri3or 6095 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 df-3or 920 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
42, 3sylib 120 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
54orcomd 680 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
65ord 675 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
71, 6sylbid 148 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵)))
8 nnord 4352 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
98adantl 271 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → Ord 𝐵)
10 ordelss 4134 . . . . 5 ((Ord 𝐵𝐴𝐵) → 𝐴𝐵)
1110ex 113 . . . 4 (Ord 𝐵 → (𝐴𝐵𝐴𝐵))
129, 11syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
13 eqimss 3051 . . . 4 (𝐴 = 𝐵𝐴𝐵)
1413a1i 9 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
1512, 14jaod 669 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵))
167, 15impbid 127 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3o 918   = wceq 1284  wcel 1433  wss 2973  Ord word 4117  ωcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator