ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc11g GIF version

Theorem suc11g 4300
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
suc11g ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem suc11g
StepHypRef Expression
1 en2lp 4297 . . . 4 ¬ (𝐵𝐴𝐴𝐵)
2 sucidg 4171 . . . . . . . . . . . 12 (𝐵𝑊𝐵 ∈ suc 𝐵)
3 eleq2 2142 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴𝐵 ∈ suc 𝐵))
42, 3syl5ibrcom 155 . . . . . . . . . . 11 (𝐵𝑊 → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
5 elsucg 4159 . . . . . . . . . . 11 (𝐵𝑊 → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
64, 5sylibd 147 . . . . . . . . . 10 (𝐵𝑊 → (suc 𝐴 = suc 𝐵 → (𝐵𝐴𝐵 = 𝐴)))
76imp 122 . . . . . . . . 9 ((𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
873adant1 956 . . . . . . . 8 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
9 sucidg 4171 . . . . . . . . . . . 12 (𝐴𝑉𝐴 ∈ suc 𝐴)
10 eleq2 2142 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴𝐴 ∈ suc 𝐵))
119, 10syl5ibcom 153 . . . . . . . . . . 11 (𝐴𝑉 → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
12 elsucg 4159 . . . . . . . . . . 11 (𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
1311, 12sylibd 147 . . . . . . . . . 10 (𝐴𝑉 → (suc 𝐴 = suc 𝐵 → (𝐴𝐵𝐴 = 𝐵)))
1413imp 122 . . . . . . . . 9 ((𝐴𝑉 ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
15143adant2 957 . . . . . . . 8 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
168, 15jca 300 . . . . . . 7 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)))
17 eqcom 2083 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
1817orbi2i 711 . . . . . . . 8 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
1918anbi1i 445 . . . . . . 7 (((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2016, 19sylib 120 . . . . . 6 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
21 ordir 763 . . . . . 6 (((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2220, 21sylibr 132 . . . . 5 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵))
2322ord 675 . . . 4 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵𝐴𝐴𝐵) → 𝐴 = 𝐵))
241, 23mpi 15 . . 3 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵)
25243expia 1140 . 2 ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
26 suceq 4157 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
2725, 26impbid1 140 1 ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3a 919   = wceq 1284  wcel 1433  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-dif 2975  df-un 2977  df-sn 3404  df-pr 3405  df-suc 4126
This theorem is referenced by:  suc11  4301  peano4  4338  frecsuclem3  6013
  Copyright terms: Public domain W3C validator