ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovid GIF version

Theorem ovid 5637
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovid.1 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
ovid.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovid ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovid
StepHypRef Expression
1 df-ov 5535 . . 3 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
21eqeq1i 2088 . 2 ((𝑥𝐹𝑦) = 𝑧 ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
3 ovid.1 . . . . . 6 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
43fnoprab 5624 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}
5 ovid.2 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
65fneq1i 5013 . . . . 5 (𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
74, 6mpbir 144 . . . 4 𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}
8 opabid 4012 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝑥𝑅𝑦𝑆))
98biimpri 131 . . . 4 ((𝑥𝑅𝑦𝑆) → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
10 fnopfvb 5236 . . . 4 ((𝐹 Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹))
117, 9, 10sylancr 405 . . 3 ((𝑥𝑅𝑦𝑆) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹))
125eleq2i 2145 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})
13 oprabid 5557 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝑥𝑅𝑦𝑆) ∧ 𝜑))
1412, 13bitri 182 . . . 4 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 ↔ ((𝑥𝑅𝑦𝑆) ∧ 𝜑))
1514baib 861 . . 3 ((𝑥𝑅𝑦𝑆) → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹𝜑))
1611, 15bitrd 186 . 2 ((𝑥𝑅𝑦𝑆) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝜑))
172, 16syl5bb 190 1 ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  ∃!weu 1941  cop 3401  {copab 3838   Fn wfn 4917  cfv 4922  (class class class)co 5532  {coprab 5533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-ov 5535  df-oprab 5536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator