![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovid | GIF version |
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovid.1 | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑) |
ovid.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} |
Ref | Expression |
---|---|
ovid | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = 𝑧 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5535 | . . 3 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
2 | 1 | eqeq1i 2088 | . 2 ⊢ ((𝑥𝐹𝑦) = 𝑧 ↔ (𝐹‘〈𝑥, 𝑦〉) = 𝑧) |
3 | ovid.1 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑) | |
4 | 3 | fnoprab 5624 | . . . . 5 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} |
5 | ovid.2 | . . . . . 6 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} | |
6 | 5 | fneq1i 5013 | . . . . 5 ⊢ (𝐹 Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ↔ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) |
7 | 4, 6 | mpbir 144 | . . . 4 ⊢ 𝐹 Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} |
8 | opabid 4012 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ↔ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) | |
9 | 8 | biimpri 131 | . . . 4 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) |
10 | fnopfvb 5236 | . . . 4 ⊢ ((𝐹 Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ∧ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) → ((𝐹‘〈𝑥, 𝑦〉) = 𝑧 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹)) | |
11 | 7, 9, 10 | sylancr 405 | . . 3 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝐹‘〈𝑥, 𝑦〉) = 𝑧 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹)) |
12 | 5 | eleq2i 2145 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}) |
13 | oprabid 5557 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ↔ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)) | |
14 | 12, 13 | bitri 182 | . . . 4 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 ↔ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)) |
15 | 14 | baib 861 | . . 3 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 ↔ 𝜑)) |
16 | 11, 15 | bitrd 186 | . 2 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝐹‘〈𝑥, 𝑦〉) = 𝑧 ↔ 𝜑)) |
17 | 2, 16 | syl5bb 190 | 1 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = 𝑧 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃!weu 1941 〈cop 3401 {copab 3838 Fn wfn 4917 ‘cfv 4922 (class class class)co 5532 {coprab 5533 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-ov 5535 df-oprab 5536 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |