![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovigg | GIF version |
Description: The value of an operation class abstraction. Compare ovig 5642. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovigg.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
ovigg.4 | ⊢ ∃*𝑧𝜑 |
ovigg.5 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Ref | Expression |
---|---|
ovigg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovigg.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
2 | 1 | eloprabga 5611 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜓)) |
3 | df-ov 5535 | . . . 4 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
4 | ovigg.5 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | 4 | fveq1i 5199 | . . . 4 ⊢ (𝐹‘〈𝐴, 𝐵〉) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2101 | . . 3 ⊢ (𝐴𝐹𝐵) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) |
7 | ovigg.4 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
8 | 7 | funoprab 5621 | . . . 4 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
9 | funopfv 5234 | . . . 4 ⊢ (Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) = 𝐶)) | |
10 | 8, 9 | ax-mp 7 | . . 3 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) = 𝐶) |
11 | 6, 10 | syl5eq 2125 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → (𝐴𝐹𝐵) = 𝐶) |
12 | 2, 11 | syl6bir 162 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 ∃*wmo 1942 〈cop 3401 Fun wfun 4916 ‘cfv 4922 (class class class)co 5532 {coprab 5533 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-ov 5535 df-oprab 5536 |
This theorem is referenced by: ovig 5642 |
Copyright terms: Public domain | W3C validator |