ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2dv2 GIF version

Theorem ovmpt2dv2 5654
Description: Alternate deduction version of ovmpt2 5656, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpt2dv2.1 (𝜑𝐴𝐶)
ovmpt2dv2.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpt2dv2.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpt2dv2.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
Assertion
Ref Expression
ovmpt2dv2 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt2dv2
StepHypRef Expression
1 eqidd 2082 . . 3 (𝜑 → (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpt2dv2.1 . . . 4 (𝜑𝐴𝐶)
3 ovmpt2dv2.2 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
4 ovmpt2dv2.3 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
5 ovmpt2dv2.4 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
65eqeq2d 2092 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
76biimpd 142 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑅 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
8 nfmpt21 5591 . . . 4 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
9 nfcv 2219 . . . . . 6 𝑥𝐴
10 nfcv 2219 . . . . . 6 𝑥𝐵
119, 8, 10nfov 5555 . . . . 5 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
1211nfeq1 2228 . . . 4 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
13 nfmpt22 5592 . . . 4 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
14 nfcv 2219 . . . . . 6 𝑦𝐴
15 nfcv 2219 . . . . . 6 𝑦𝐵
1614, 13, 15nfov 5555 . . . . 5 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
1716nfeq1 2228 . . . 4 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
182, 3, 4, 7, 8, 12, 13, 17ovmpt2df 5652 . . 3 (𝜑 → ((𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
191, 18mpd 13 . 2 (𝜑 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
20 oveq 5538 . . 3 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
2120eqeq1d 2089 . 2 (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → ((𝐴𝐹𝐵) = 𝑆 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
2219, 21syl5ibrcom 155 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  (class class class)co 5532  cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator