ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwex Unicode version

Theorem pwex 3953
Description: Power set axiom expressed in class notation. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Hypothesis
Ref Expression
zfpowcl.1  |-  A  e. 
_V
Assertion
Ref Expression
pwex  |-  ~P A  e.  _V

Proof of Theorem pwex
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfpowcl.1 . 2  |-  A  e. 
_V
2 pweq 3385 . . 3  |-  ( z  =  A  ->  ~P z  =  ~P A
)
32eleq1d 2147 . 2  |-  ( z  =  A  ->  ( ~P z  e.  _V  <->  ~P A  e.  _V )
)
4 df-pw 3384 . . 3  |-  ~P z  =  { y  |  y 
C_  z }
5 axpow2 3950 . . . . . 6  |-  E. x A. y ( y  C_  z  ->  y  e.  x
)
65bm1.3ii 3899 . . . . 5  |-  E. x A. y ( y  e.  x  <->  y  C_  z
)
7 abeq2 2187 . . . . . 6  |-  ( x  =  { y  |  y  C_  z }  <->  A. y ( y  e.  x  <->  y  C_  z
) )
87exbii 1536 . . . . 5  |-  ( E. x  x  =  {
y  |  y  C_  z }  <->  E. x A. y
( y  e.  x  <->  y 
C_  z ) )
96, 8mpbir 144 . . . 4  |-  E. x  x  =  { y  |  y  C_  z }
109issetri 2608 . . 3  |-  { y  |  y  C_  z }  e.  _V
114, 10eqeltri 2151 . 2  |-  ~P z  e.  _V
121, 3, 11vtocl 2653 1  |-  ~P A  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   _Vcvv 2601    C_ wss 2973   ~Pcpw 3382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384
This theorem is referenced by:  pwexg  3954  p0ex  3959  pp0ex  3960  ord3ex  3961  abexssex  5772  npex  6663  axcnex  7027  pnfxr  8846  mnfxr  8848  ixxex  8922
  Copyright terms: Public domain W3C validator