| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resiexg | GIF version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) |
| Ref | Expression |
|---|---|
| resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4657 | . . 3 ⊢ Rel ( I ↾ 𝐴) | |
| 2 | simpr 108 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | eleq1 2141 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 3 | biimpa 290 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 5 | 2, 4 | jca 300 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
| 6 | vex 2604 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 7 | 6 | opelres 4635 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ 𝐴)) |
| 8 | df-br 3786 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 9 | 6 | ideq 4506 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 10 | 8, 9 | bitr3i 184 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
| 11 | 10 | anbi1i 445 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 12 | 7, 11 | bitri 182 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 13 | opelxp 4392 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
| 14 | 5, 12, 13 | 3imtr4i 199 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴)) |
| 15 | 1, 14 | relssi 4449 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
| 16 | xpexg 4470 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
| 17 | 16 | anidms 389 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| 18 | ssexg 3917 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
| 19 | 15, 17, 18 | sylancr 405 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 Vcvv 2601 ⊆ wss 2973 〈cop 3401 class class class wbr 3785 I cid 4043 × cxp 4361 ↾ cres 4365 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-res 4375 |
| This theorem is referenced by: ordiso 6447 |
| Copyright terms: Public domain | W3C validator |