ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg Unicode version

Theorem resiexg 4673
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )

Proof of Theorem resiexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4657 . . 3  |-  Rel  (  _I  |`  A )
2 simpr 108 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  x  e.  A )
3 eleq1 2141 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43biimpa 290 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  y  e.  A )
52, 4jca 300 . . . 4  |-  ( ( x  =  y  /\  x  e.  A )  ->  ( x  e.  A  /\  y  e.  A
) )
6 vex 2604 . . . . . 6  |-  y  e. 
_V
76opelres 4635 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( <. x ,  y
>.  e.  _I  /\  x  e.  A ) )
8 df-br 3786 . . . . . . 7  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
96ideq 4506 . . . . . . 7  |-  ( x  _I  y  <->  x  =  y )
108, 9bitr3i 184 . . . . . 6  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1110anbi1i 445 . . . . 5  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e.  A )  <->  ( x  =  y  /\  x  e.  A ) )
127, 11bitri 182 . . . 4  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( x  =  y  /\  x  e.  A
) )
13 opelxp 4392 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  y  e.  A ) )
145, 12, 133imtr4i 199 . . 3  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  ->  <. x ,  y
>.  e.  ( A  X.  A ) )
151, 14relssi 4449 . 2  |-  (  _I  |`  A )  C_  ( A  X.  A )
16 xpexg 4470 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
1716anidms 389 . 2  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
18 ssexg 3917 . 2  |-  ( ( (  _I  |`  A ) 
C_  ( A  X.  A )  /\  ( A  X.  A )  e. 
_V )  ->  (  _I  |`  A )  e. 
_V )
1915, 17, 18sylancr 405 1  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1433   _Vcvv 2601    C_ wss 2973   <.cop 3401   class class class wbr 3785    _I cid 4043    X. cxp 4361    |` cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-res 4375
This theorem is referenced by:  ordiso  6447
  Copyright terms: Public domain W3C validator