ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfung GIF version

Theorem sbcfung 4945
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfung (𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))

Proof of Theorem sbcfung
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 2856 . . 3 ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ ([𝐴 / 𝑥]Rel 𝐹[𝐴 / 𝑥]𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)))
2 sbcrel 4444 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝐹 ↔ Rel 𝐴 / 𝑥𝐹))
3 sbcal 2865 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤[𝐴 / 𝑥]𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧))
4 sbcal 2865 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦[𝐴 / 𝑥]𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧))
5 sbcal 2865 . . . . . . . . 9 ([𝐴 / 𝑥]𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧[𝐴 / 𝑥]((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧))
6 sbcimg 2855 . . . . . . . . . . 11 (𝐴𝑉 → ([𝐴 / 𝑥]((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ([𝐴 / 𝑥](𝑤𝐹𝑦𝑤𝐹𝑧) → [𝐴 / 𝑥]𝑦 = 𝑧)))
7 sbcan 2856 . . . . . . . . . . . . 13 ([𝐴 / 𝑥](𝑤𝐹𝑦𝑤𝐹𝑧) ↔ ([𝐴 / 𝑥]𝑤𝐹𝑦[𝐴 / 𝑥]𝑤𝐹𝑧))
8 sbcbrg 3834 . . . . . . . . . . . . . . 15 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑦𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦))
9 csbconstg 2920 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥𝑤 = 𝑤)
10 csbconstg 2920 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
119, 10breq12d 3798 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝑤𝐴 / 𝑥𝐹𝑦))
128, 11bitrd 186 . . . . . . . . . . . . . 14 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑦))
13 sbcbrg 3834 . . . . . . . . . . . . . . 15 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑧))
14 csbconstg 2920 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
159, 14breq12d 3798 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑧𝑤𝐴 / 𝑥𝐹𝑧))
1613, 15bitrd 186 . . . . . . . . . . . . . 14 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧𝑤𝐴 / 𝑥𝐹𝑧))
1712, 16anbi12d 456 . . . . . . . . . . . . 13 (𝐴𝑉 → (([𝐴 / 𝑥]𝑤𝐹𝑦[𝐴 / 𝑥]𝑤𝐹𝑧) ↔ (𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧)))
187, 17syl5bb 190 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑦𝑤𝐹𝑧) ↔ (𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧)))
19 sbcg 2883 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))
2018, 19imbi12d 232 . . . . . . . . . . 11 (𝐴𝑉 → (([𝐴 / 𝑥](𝑤𝐹𝑦𝑤𝐹𝑧) → [𝐴 / 𝑥]𝑦 = 𝑧) ↔ ((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
216, 20bitrd 186 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2221albidv 1745 . . . . . . . . 9 (𝐴𝑉 → (∀𝑧[𝐴 / 𝑥]((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
235, 22syl5bb 190 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2423albidv 1745 . . . . . . 7 (𝐴𝑉 → (∀𝑦[𝐴 / 𝑥]𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
254, 24syl5bb 190 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2625albidv 1745 . . . . 5 (𝐴𝑉 → (∀𝑤[𝐴 / 𝑥]𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
273, 26syl5bb 190 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
282, 27anbi12d 456 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]Rel 𝐹[𝐴 / 𝑥]𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧))))
291, 28syl5bb 190 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧))))
30 dffun2 4932 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)))
3130sbcbii 2873 . 2 ([𝐴 / 𝑥]Fun 𝐹[𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)))
32 dffun2 4932 . 2 (Fun 𝐴 / 𝑥𝐹 ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
3329, 31, 323bitr4g 221 1 (𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282  wcel 1433  [wsbc 2815  csb 2908   class class class wbr 3785  Rel wrel 4368  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-rel 4370  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by:  sbcfng  5064
  Copyright terms: Public domain W3C validator