![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3orass | GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 920 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | orass 716 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitri 182 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∨ wo 661 ∨ w3o 918 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
This theorem depends on definitions: df-bi 115 df-3or 920 |
This theorem is referenced by: 3orrot 925 3orcomb 928 3mix1 1107 sotritric 4079 sotritrieq 4080 ordtriexmid 4265 acexmidlemcase 5527 nntri3or 6095 nntri2 6096 elnnz 8361 elznn0 8366 elznn 8367 zapne 8422 nn01to3 8702 elxr 8850 bezoutlemmain 10387 |
Copyright terms: Public domain | W3C validator |