Proof of Theorem sotritrieq
| Step | Hyp | Ref
| Expression |
| 1 | | sotritric.or |
. . . . . . 7
⊢ 𝑅 Or 𝐴 |
| 2 | | sonr 4072 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| 3 | 1, 2 | mpan 414 |
. . . . . 6
⊢ (𝐵 ∈ 𝐴 → ¬ 𝐵𝑅𝐵) |
| 4 | | breq2 3789 |
. . . . . . 7
⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) |
| 5 | 4 | notbid 624 |
. . . . . 6
⊢ (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅𝐶)) |
| 6 | 3, 5 | syl5ibcom 153 |
. . . . 5
⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶)) |
| 7 | | breq1 3788 |
. . . . . . 7
⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐶𝑅𝐵)) |
| 8 | 7 | notbid 624 |
. . . . . 6
⊢ (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐶𝑅𝐵)) |
| 9 | 3, 8 | syl5ibcom 153 |
. . . . 5
⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → ¬ 𝐶𝑅𝐵)) |
| 10 | 6, 9 | jcad 301 |
. . . 4
⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵))) |
| 11 | | ioran 701 |
. . . 4
⊢ (¬
(𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵)) |
| 12 | 10, 11 | syl6ibr 160 |
. . 3
⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 13 | 12 | adantr 270 |
. 2
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 14 | | sotritric.tri |
. . 3
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) |
| 15 | | 3orrot 925 |
. . . . . . 7
⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵 ∨ 𝐵𝑅𝐶)) |
| 16 | | 3orcomb 928 |
. . . . . . 7
⊢ ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵 ∨ 𝐵𝑅𝐶) ↔ (𝐵 = 𝐶 ∨ 𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵)) |
| 17 | | 3orass 922 |
. . . . . . 7
⊢ ((𝐵 = 𝐶 ∨ 𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 18 | 15, 16, 17 | 3bitri 204 |
. . . . . 6
⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 19 | 18 | biimpi 118 |
. . . . 5
⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 20 | 19 | orcomd 680 |
. . . 4
⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → ((𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ∨ 𝐵 = 𝐶)) |
| 21 | 20 | ord 675 |
. . 3
⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → (¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) → 𝐵 = 𝐶)) |
| 22 | 14, 21 | syl 14 |
. 2
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) → 𝐵 = 𝐶)) |
| 23 | 13, 22 | impbid 127 |
1
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |