ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o00 GIF version

Theorem f1o00 5181
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 5154 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2 fn0 5038 . . . . . 6 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
32biimpi 118 . . . . 5 (𝐹 Fn ∅ → 𝐹 = ∅)
43adantr 270 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐹 = ∅)
5 dm0 4567 . . . . 5 dom ∅ = ∅
6 cnveq 4527 . . . . . . . . . 10 (𝐹 = ∅ → 𝐹 = ∅)
7 cnv0 4747 . . . . . . . . . 10 ∅ = ∅
86, 7syl6eq 2129 . . . . . . . . 9 (𝐹 = ∅ → 𝐹 = ∅)
92, 8sylbi 119 . . . . . . . 8 (𝐹 Fn ∅ → 𝐹 = ∅)
109fneq1d 5009 . . . . . . 7 (𝐹 Fn ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
1110biimpa 290 . . . . . 6 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → ∅ Fn 𝐴)
12 fndm 5018 . . . . . 6 (∅ Fn 𝐴 → dom ∅ = 𝐴)
1311, 12syl 14 . . . . 5 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → dom ∅ = 𝐴)
145, 13syl5reqr 2128 . . . 4 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → 𝐴 = ∅)
154, 14jca 300 . . 3 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) → (𝐹 = ∅ ∧ 𝐴 = ∅))
162biimpri 131 . . . . 5 (𝐹 = ∅ → 𝐹 Fn ∅)
1716adantr 270 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn ∅)
18 eqid 2081 . . . . . 6 ∅ = ∅
19 fn0 5038 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
2018, 19mpbir 144 . . . . 5 ∅ Fn ∅
218fneq1d 5009 . . . . . 6 (𝐹 = ∅ → (𝐹 Fn 𝐴 ↔ ∅ Fn 𝐴))
22 fneq2 5008 . . . . . 6 (𝐴 = ∅ → (∅ Fn 𝐴 ↔ ∅ Fn ∅))
2321, 22sylan9bb 449 . . . . 5 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn 𝐴 ↔ ∅ Fn ∅))
2420, 23mpbiri 166 . . . 4 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹 Fn 𝐴)
2517, 24jca 300 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴))
2615, 25impbii 124 . 2 ((𝐹 Fn ∅ ∧ 𝐹 Fn 𝐴) ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
271, 26bitri 182 1 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  c0 3251  ccnv 4362  dom cdm 4363   Fn wfn 4917  1-1-ontowf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929
This theorem is referenced by:  fo00  5182  f1o0  5183  en0  6298
  Copyright terms: Public domain W3C validator