ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eqbr GIF version

Theorem syl6eqbr 3822
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
Hypotheses
Ref Expression
syl6eqbr.1 (𝜑𝐴 = 𝐵)
syl6eqbr.2 𝐵𝑅𝐶
Assertion
Ref Expression
syl6eqbr (𝜑𝐴𝑅𝐶)

Proof of Theorem syl6eqbr
StepHypRef Expression
1 syl6eqbr.2 . 2 𝐵𝑅𝐶
2 syl6eqbr.1 . . 3 (𝜑𝐴 = 𝐵)
32breq1d 3795 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
41, 3mpbiri 166 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284   class class class wbr 3785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786
This theorem is referenced by:  syl6eqbrr  3823  pm54.43  6459  nn0ledivnn  8838  xltnegi  8902  leexp1a  9531  facwordi  9667  faclbnd3  9670  resqrexlemlo  9899  dvds1  10253
  Copyright terms: Public domain W3C validator