ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfun GIF version

Theorem tposfun 5898
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposfun (Fun 𝐹 → Fun tpos 𝐹)

Proof of Theorem tposfun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funmpt 4958 . . 3 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
2 funco 4960 . . 3 ((Fun 𝐹 ∧ Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
31, 2mpan2 415 . 2 (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
4 df-tpos 5883 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
54funeqi 4942 . 2 (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
63, 5sylibr 132 1 (Fun 𝐹 → Fun tpos 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  cun 2971  c0 3251  {csn 3398   cuni 3601  cmpt 3839  ccnv 4362  dom cdm 4363  ccom 4367  Fun wfun 4916  tpos ctpos 5882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924  df-tpos 5883
This theorem is referenced by:  tposfn2  5904
  Copyright terms: Public domain W3C validator