| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dftpos2 | GIF version | ||
| Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| dftpos2 | ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmtpos 5894 | . . 3 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | |
| 2 | 1 | reseq2d 4630 | . 2 ⊢ (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹 ↾ ◡dom 𝐹)) |
| 3 | reltpos 5888 | . . 3 ⊢ Rel tpos 𝐹 | |
| 4 | resdm 4667 | . . 3 ⊢ (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹) | |
| 5 | 3, 4 | ax-mp 7 | . 2 ⊢ (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹 |
| 6 | df-tpos 5883 | . . . 4 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 7 | 6 | reseq1i 4626 | . . 3 ⊢ (tpos 𝐹 ↾ ◡dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡dom 𝐹) |
| 8 | resco 4845 | . . 3 ⊢ ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹)) | |
| 9 | ssun1 3135 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (◡dom 𝐹 ∪ {∅}) | |
| 10 | resmpt 4676 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (◡dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹) = (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) | |
| 11 | 9, 10 | ax-mp 7 | . . . 4 ⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹) = (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) |
| 12 | 11 | coeq2i 4514 | . . 3 ⊢ (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹)) = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) |
| 13 | 7, 8, 12 | 3eqtri 2105 | . 2 ⊢ (tpos 𝐹 ↾ ◡dom 𝐹) = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) |
| 14 | 2, 5, 13 | 3eqtr3g 2136 | 1 ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∪ cun 2971 ⊆ wss 2973 ∅c0 3251 {csn 3398 ∪ cuni 3601 ↦ cmpt 3839 ◡ccnv 4362 dom cdm 4363 ↾ cres 4365 ∘ ccom 4367 Rel wrel 4368 tpos ctpos 5882 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-tpos 5883 |
| This theorem is referenced by: tposf12 5907 |
| Copyright terms: Public domain | W3C validator |