![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpmlem | GIF version |
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 11-Dec-2018.) |
Ref | Expression |
---|---|
xpmlem | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eeanv 1848 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) | |
2 | vex 2604 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2604 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opex 3984 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V |
5 | eleq1 2141 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (𝐴 × 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
6 | opelxp 4392 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
7 | 5, 6 | syl6bb 194 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
8 | 4, 7 | spcev 2692 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
9 | 8 | exlimivv 1817 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
10 | 1, 9 | sylbir 133 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
11 | elxp 4380 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | |
12 | simpr 108 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
13 | 12 | 2eximi 1532 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
14 | 11, 13 | sylbi 119 | . . . 4 ⊢ (𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
15 | 14 | exlimiv 1529 | . . 3 ⊢ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
16 | 15, 1 | sylib 120 | . 2 ⊢ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
17 | 10, 16 | impbii 124 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 〈cop 3401 × cxp 4361 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 |
This theorem is referenced by: xpm 4765 |
Copyright terms: Public domain | W3C validator |