ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmlem GIF version

Theorem xpmlem 4764
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 11-Dec-2018.)
Assertion
Ref Expression
xpmlem ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem xpmlem
StepHypRef Expression
1 eeanv 1848 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
2 vex 2604 . . . . . 6 𝑥 ∈ V
3 vex 2604 . . . . . 6 𝑦 ∈ V
42, 3opex 3984 . . . . 5 𝑥, 𝑦⟩ ∈ V
5 eleq1 2141 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
6 opelxp 4392 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
75, 6syl6bb 194 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
84, 7spcev 2692 . . . 4 ((𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
98exlimivv 1817 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
101, 9sylbir 133 . 2 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
11 elxp 4380 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
12 simpr 108 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐴𝑦𝐵))
13122eximi 1532 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1411, 13sylbi 119 . . . 4 (𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1514exlimiv 1529 . . 3 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1615, 1sylib 120 . 2 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
1710, 16impbii 124 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  cop 3401   × cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369
This theorem is referenced by:  xpm  4765
  Copyright terms: Public domain W3C validator