ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpm GIF version

Theorem xpm 4765
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xpm ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)

Proof of Theorem xpm
Dummy variables 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmlem 4764 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑤 𝑤 ∈ (𝐴 × 𝐵))
2 eleq1 2141 . . . 4 (𝑎 = 𝑥 → (𝑎𝐴𝑥𝐴))
32cbvexv 1836 . . 3 (∃𝑎 𝑎𝐴 ↔ ∃𝑥 𝑥𝐴)
4 eleq1 2141 . . . 4 (𝑏 = 𝑦 → (𝑏𝐵𝑦𝐵))
54cbvexv 1836 . . 3 (∃𝑏 𝑏𝐵 ↔ ∃𝑦 𝑦𝐵)
63, 5anbi12i 447 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
7 eleq1 2141 . . 3 (𝑤 = 𝑧 → (𝑤 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐴 × 𝐵)))
87cbvexv 1836 . 2 (∃𝑤 𝑤 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
91, 6, 83bitr3i 208 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wex 1421  wcel 1433   × cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369
This theorem is referenced by:  ssxpbm  4776  xp11m  4779  xpexr2m  4782  unixpm  4873
  Copyright terms: Public domain W3C validator