![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpm | GIF version |
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.) |
Ref | Expression |
---|---|
xpm | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpmlem 4764 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑤 𝑤 ∈ (𝐴 × 𝐵)) | |
2 | eleq1 2141 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝑎 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | cbvexv 1836 | . . 3 ⊢ (∃𝑎 𝑎 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) |
4 | eleq1 2141 | . . . 4 ⊢ (𝑏 = 𝑦 → (𝑏 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
5 | 4 | cbvexv 1836 | . . 3 ⊢ (∃𝑏 𝑏 ∈ 𝐵 ↔ ∃𝑦 𝑦 ∈ 𝐵) |
6 | 3, 5 | anbi12i 447 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
7 | eleq1 2141 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ (𝐴 × 𝐵) ↔ 𝑧 ∈ (𝐴 × 𝐵))) | |
8 | 7 | cbvexv 1836 | . 2 ⊢ (∃𝑤 𝑤 ∈ (𝐴 × 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
9 | 1, 6, 8 | 3bitr3i 208 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∃wex 1421 ∈ wcel 1433 × cxp 4361 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 |
This theorem is referenced by: ssxpbm 4776 xp11m 4779 xpexr2m 4782 unixpm 4873 |
Copyright terms: Public domain | W3C validator |