MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vtxrgr Structured version   Visualization version   Unicode version

Theorem 0vtxrgr 26472
Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Assertion
Ref Expression
0vtxrgr  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  A. k  e. NN0*  G RegGraph  k )
Distinct variable groups:    k, G    k, W

Proof of Theorem 0vtxrgr
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  /\  k  e. NN0* )  ->  k  e. NN0* )
2 rzal 4073 . . . 4  |-  ( (Vtx
`  G )  =  (/)  ->  A. v  e.  (Vtx
`  G ) ( (VtxDeg `  G ) `  v )  =  k )
32ad2antlr 763 . . 3  |-  ( ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  /\  k  e. NN0* )  ->  A. v  e.  (Vtx `  G )
( (VtxDeg `  G
) `  v )  =  k )
4 eqid 2622 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
5 eqid 2622 . . . . 5  |-  (VtxDeg `  G )  =  (VtxDeg `  G )
64, 5isrgr 26455 . . . 4  |-  ( ( G  e.  W  /\  k  e. NN0* )  ->  ( G RegGraph  k  <->  ( k  e. NN0*  /\  A. v  e.  (Vtx
`  G ) ( (VtxDeg `  G ) `  v )  =  k ) ) )
76adantlr 751 . . 3  |-  ( ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  /\  k  e. NN0* )  ->  ( G RegGraph  k  <-> 
( k  e. NN0*  /\  A. v  e.  (Vtx `  G ) ( (VtxDeg `  G ) `  v
)  =  k ) ) )
81, 3, 7mpbir2and 957 . 2  |-  ( ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  /\  k  e. NN0* )  ->  G RegGraph  k )
98ralrimiva 2966 1  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  A. k  e. NN0*  G RegGraph  k )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   (/)c0 3915   class class class wbr 4653   ` cfv 5888  NN0*cxnn0 11363  Vtxcvtx 25874  VtxDegcvtxdg 26361   RegGraph crgr 26451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-rgr 26453
This theorem is referenced by:  0vtxrusgr  26473
  Copyright terms: Public domain W3C validator