MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrgr Structured version   Visualization version   Unicode version

Theorem isrgr 26455
Description: The property of a class being a k-regular graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrgr.v  |-  V  =  (Vtx `  G )
isrgr.d  |-  D  =  (VtxDeg `  G )
Assertion
Ref Expression
isrgr  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( G RegGraph  K  <->  ( K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) )
Distinct variable groups:    v, G    v, K
Allowed substitution hints:    D( v)    V( v)    W( v)    Z( v)

Proof of Theorem isrgr
Dummy variables  g 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5  |-  ( k  =  K  ->  (
k  e. NN0*  <->  K  e. NN0* ) )
21adantl 482 . . . 4  |-  ( ( g  =  G  /\  k  =  K )  ->  ( k  e. NN0*  <->  K  e. NN0* ) )
3 fveq2 6191 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
43adantr 481 . . . . 5  |-  ( ( g  =  G  /\  k  =  K )  ->  (Vtx `  g )  =  (Vtx `  G )
)
5 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  (VtxDeg `  g )  =  (VtxDeg `  G ) )
65fveq1d 6193 . . . . . . 7  |-  ( g  =  G  ->  (
(VtxDeg `  g ) `  v )  =  ( (VtxDeg `  G ) `  v ) )
76adantr 481 . . . . . 6  |-  ( ( g  =  G  /\  k  =  K )  ->  ( (VtxDeg `  g
) `  v )  =  ( (VtxDeg `  G ) `  v
) )
8 simpr 477 . . . . . 6  |-  ( ( g  =  G  /\  k  =  K )  ->  k  =  K )
97, 8eqeq12d 2637 . . . . 5  |-  ( ( g  =  G  /\  k  =  K )  ->  ( ( (VtxDeg `  g ) `  v
)  =  k  <->  ( (VtxDeg `  G ) `  v
)  =  K ) )
104, 9raleqbidv 3152 . . . 4  |-  ( ( g  =  G  /\  k  =  K )  ->  ( A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  k  <->  A. v  e.  (Vtx
`  G ) ( (VtxDeg `  G ) `  v )  =  K ) )
112, 10anbi12d 747 . . 3  |-  ( ( g  =  G  /\  k  =  K )  ->  ( ( k  e. NN0*  /\  A. v  e.  (Vtx
`  g ) ( (VtxDeg `  g ) `  v )  =  k )  <->  ( K  e. NN0*  /\  A. v  e.  (Vtx
`  G ) ( (VtxDeg `  G ) `  v )  =  K ) ) )
12 df-rgr 26453 . . 3  |- RegGraph  =  { <. g ,  k >.  |  ( k  e. NN0*  /\  A. v  e.  (Vtx
`  g ) ( (VtxDeg `  g ) `  v )  =  k ) }
1311, 12brabga 4989 . 2  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( G RegGraph  K  <->  ( K  e. NN0*  /\  A. v  e.  (Vtx `  G )
( (VtxDeg `  G
) `  v )  =  K ) ) )
14 isrgr.v . . . . . 6  |-  V  =  (Vtx `  G )
15 isrgr.d . . . . . . . 8  |-  D  =  (VtxDeg `  G )
1615fveq1i 6192 . . . . . . 7  |-  ( D `
 v )  =  ( (VtxDeg `  G
) `  v )
1716eqeq1i 2627 . . . . . 6  |-  ( ( D `  v )  =  K  <->  ( (VtxDeg `  G ) `  v
)  =  K )
1814, 17raleqbii 2990 . . . . 5  |-  ( A. v  e.  V  ( D `  v )  =  K  <->  A. v  e.  (Vtx
`  G ) ( (VtxDeg `  G ) `  v )  =  K )
1918bicomi 214 . . . 4  |-  ( A. v  e.  (Vtx `  G
) ( (VtxDeg `  G ) `  v
)  =  K  <->  A. v  e.  V  ( D `  v )  =  K )
2019a1i 11 . . 3  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( A. v  e.  (Vtx `  G )
( (VtxDeg `  G
) `  v )  =  K  <->  A. v  e.  V  ( D `  v )  =  K ) )
2120anbi2d 740 . 2  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( ( K  e. NN0*  /\  A. v  e.  (Vtx
`  G ) ( (VtxDeg `  G ) `  v )  =  K )  <->  ( K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) )
2213, 21bitrd 268 1  |-  ( ( G  e.  W  /\  K  e.  Z )  ->  ( G RegGraph  K  <->  ( K  e. NN0*  /\  A. v  e.  V  ( D `  v )  =  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  NN0*cxnn0 11363  Vtxcvtx 25874  VtxDegcvtxdg 26361   RegGraph crgr 26451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-rgr 26453
This theorem is referenced by:  rgrprop  26456  isrusgr0  26462  0edg0rgr  26468  0vtxrgr  26472  rgrprcx  26488
  Copyright terms: Public domain W3C validator