MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1times Structured version   Visualization version   Unicode version

Theorem 1p1times 10207
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )

Proof of Theorem 1p1times
StepHypRef Expression
1 1cnd 10056 . 2  |-  ( A  e.  CC  ->  1  e.  CC )
2 id 22 . 2  |-  ( A  e.  CC  ->  A  e.  CC )
3 mulid2 10038 . . 3  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
43, 3oveq12d 6668 . 2  |-  ( A  e.  CC  ->  (
( 1  x.  A
)  +  ( 1  x.  A ) )  =  ( A  +  A ) )
51, 2, 1, 4joinlmuladdmuld 10067 1  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-mulcom 10000  ax-mulass 10002  ax-distr 10003  ax-1rid 10006  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  addcom  10222  addcomd  10238  eqneg  10745  2times  11145
  Copyright terms: Public domain W3C validator