| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muladd11 | Structured version Visualization version Unicode version | ||
| Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| muladd11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 9994 |
. . . 4
| |
| 2 | addcl 10018 |
. . . 4
| |
| 3 | 1, 2 | mpan 706 |
. . 3
|
| 4 | adddi 10025 |
. . . 4
| |
| 5 | 1, 4 | mp3an2 1412 |
. . 3
|
| 6 | 3, 5 | sylan 488 |
. 2
|
| 7 | 3 | mulid1d 10057 |
. . . 4
|
| 8 | 7 | adantr 481 |
. . 3
|
| 9 | adddir 10031 |
. . . . 5
| |
| 10 | 1, 9 | mp3an1 1411 |
. . . 4
|
| 11 | mulid2 10038 |
. . . . . 6
| |
| 12 | 11 | adantl 482 |
. . . . 5
|
| 13 | 12 | oveq1d 6665 |
. . . 4
|
| 14 | 10, 13 | eqtrd 2656 |
. . 3
|
| 15 | 8, 14 | oveq12d 6668 |
. 2
|
| 16 | 6, 15 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-mulcom 10000 ax-mulass 10002 ax-distr 10003 ax-1rid 10006 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: muladd11r 10249 bernneq 12990 |
| Copyright terms: Public domain | W3C validator |