![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version Unicode version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 11032. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 9994 |
. 2
![]() ![]() ![]() ![]() | |
2 | addcl 10018 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpan2 707 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 9994 ax-addcl 9996 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: xp1d2m1eqxm1d2 11286 nneo 11461 zeo 11463 zeo2 11464 zesq 12987 facndiv 13075 faclbnd 13077 faclbnd6 13086 iseralt 14415 bcxmas 14567 trireciplem 14594 fallfacfwd 14767 bpolydiflem 14785 fsumcube 14791 odd2np1 15065 srgbinomlem3 18542 srgbinomlem4 18543 pcoass 22824 dvfsumabs 23786 ply1divex 23896 qaa 24078 aaliou3lem2 24098 abssinper 24270 advlogexp 24401 atantayl2 24665 basellem3 24809 basellem8 24814 lgseisenlem1 25100 lgsquadlem1 25105 pntrsumo1 25254 crctcshwlkn0lem6 26707 clwlkclwwlklem3 26902 fwddifnp1 32272 ltflcei 33397 itg2addnclem3 33463 pell14qrgapw 37440 binomcxplemrat 38549 sumnnodd 39862 dirkertrigeqlem1 40315 dirkertrigeqlem3 40317 dirkertrigeq 40318 fourierswlem 40447 fmtnorec4 41461 lighneallem4b 41526 |
Copyright terms: Public domain | W3C validator |