MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2elresin Structured version   Visualization version   Unicode version

Theorem 2elresin 6002
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
2elresin  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )

Proof of Theorem 2elresin
StepHypRef Expression
1 fnop 5994 . . . . . . . 8  |-  ( ( F  Fn  A  /\  <.
x ,  y >.  e.  F )  ->  x  e.  A )
2 fnop 5994 . . . . . . . 8  |-  ( ( G  Fn  B  /\  <.
x ,  z >.  e.  G )  ->  x  e.  B )
31, 2anim12i 590 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  <. x ,  y
>.  e.  F )  /\  ( G  Fn  B  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
43an4s 869 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
5 elin 3796 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
64, 5sylibr 224 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  x  e.  ( A  i^i  B ) )
7 vex 3203 . . . . . . . 8  |-  y  e. 
_V
87opres 5406 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  <->  <. x ,  y >.  e.  F
) )
9 vex 3203 . . . . . . . 8  |-  z  e. 
_V
109opres 5406 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  <->  <. x ,  z >.  e.  G
) )
118, 10anbi12d 747 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  <->  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) ) )
1211biimprd 238 . . . . 5  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
136, 12syl 17 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
1413ex 450 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) ) )
1514pm2.43d 53 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
16 resss 5422 . . . 4  |-  ( F  |`  ( A  i^i  B
) )  C_  F
1716sseli 3599 . . 3  |-  ( <.
x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  ->  <. x ,  y
>.  e.  F )
18 resss 5422 . . . 4  |-  ( G  |`  ( A  i^i  B
) )  C_  G
1918sseli 3599 . . 3  |-  ( <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  ->  <. x ,  z
>.  e.  G )
2017, 19anim12i 590 . 2  |-  ( (
<. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )
2115, 20impbid1 215 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    i^i cin 3573   <.cop 4183    |` cres 5116    Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124  df-res 5126  df-fun 5890  df-fn 5891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator