MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresdisj Structured version   Visualization version   Unicode version

Theorem fnresdisj 6001
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj  |-  ( F  Fn  A  ->  (
( A  i^i  B
)  =  (/)  <->  ( F  |`  B )  =  (/) ) )

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 5426 . . 3  |-  Rel  ( F  |`  B )
2 reldm0 5343 . . 3  |-  ( Rel  ( F  |`  B )  ->  ( ( F  |`  B )  =  (/)  <->  dom  ( F  |`  B )  =  (/) ) )
31, 2ax-mp 5 . 2  |-  ( ( F  |`  B )  =  (/)  <->  dom  ( F  |`  B )  =  (/) )
4 dmres 5419 . . . . 5  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
5 incom 3805 . . . . 5  |-  ( B  i^i  dom  F )  =  ( dom  F  i^i  B )
64, 5eqtri 2644 . . . 4  |-  dom  ( F  |`  B )  =  ( dom  F  i^i  B )
7 fndm 5990 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87ineq1d 3813 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  i^i  B )  =  ( A  i^i  B ) )
96, 8syl5eq 2668 . . 3  |-  ( F  Fn  A  ->  dom  ( F  |`  B )  =  ( A  i^i  B ) )
109eqeq1d 2624 . 2  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  (/)  <->  ( A  i^i  B )  =  (/) ) )
113, 10syl5rbb 273 1  |-  ( F  Fn  A  ->  (
( A  i^i  B
)  =  (/)  <->  ( F  |`  B )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    i^i cin 3573   (/)c0 3915   dom cdm 5114    |` cres 5116   Rel wrel 5119    Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124  df-res 5126  df-fn 5891
This theorem is referenced by:  funressn  6426  fvsnun2  6449  axdc3lem4  9275  fseq1p1m1  12414  hashgval  13120  hashinf  13122  pwssplit1  19059  mplmonmul  19464  wwlksm1edg  26767  eulerpartlemt  30433  poimirlem3  33412  pwssplit4  37659
  Copyright terms: Public domain W3C validator