| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reu3 | Structured version Visualization version Unicode version | ||
| Description: Double restricted existential uniqueness, analogous to 2eu3 2555. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reu3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 402 |
. . . . . . 7
| |
| 2 | 1 | ralbii 2980 |
. . . . . 6
|
| 3 | nfrmo1 3111 |
. . . . . . 7
| |
| 4 | 3 | r19.32 41167 |
. . . . . 6
|
| 5 | 2, 4 | bitri 264 |
. . . . 5
|
| 6 | orcom 402 |
. . . . 5
| |
| 7 | 5, 6 | bitri 264 |
. . . 4
|
| 8 | 7 | ralbii 2980 |
. . 3
|
| 9 | nfcv 2764 |
. . . . 5
| |
| 10 | nfrmo1 3111 |
. . . . 5
| |
| 11 | 9, 10 | nfral 2945 |
. . . 4
|
| 12 | 11 | r19.32 41167 |
. . 3
|
| 13 | 8, 12 | bitri 264 |
. 2
|
| 14 | 2reu1 41186 |
. . . . . . 7
| |
| 15 | 14 | biimpd 219 |
. . . . . 6
|
| 16 | ancom 466 |
. . . . . 6
| |
| 17 | 15, 16 | syl6ib 241 |
. . . . 5
|
| 18 | 17 | adantld 483 |
. . . 4
|
| 19 | 2reu1 41186 |
. . . . . 6
| |
| 20 | 19 | biimpd 219 |
. . . . 5
|
| 21 | 20 | adantrd 484 |
. . . 4
|
| 22 | 18, 21 | jaoi 394 |
. . 3
|
| 23 | 2rexreu 41185 |
. . . 4
| |
| 24 | 2rexreu 41185 |
. . . . 5
| |
| 25 | 24 | ancoms 469 |
. . . 4
|
| 26 | 23, 25 | jca 554 |
. . 3
|
| 27 | 22, 26 | impbid1 215 |
. 2
|
| 28 | 13, 27 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |