| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reu4a | Structured version Visualization version Unicode version | ||
| Description: Definition of double
restricted existential uniqueness ("exactly one
|
| Ref | Expression |
|---|---|
| 2reu4a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu3 3396 |
. . . 4
| |
| 2 | reu3 3396 |
. . . 4
| |
| 3 | 1, 2 | anbi12i 733 |
. . 3
|
| 4 | 3 | a1i 11 |
. 2
|
| 5 | an4 865 |
. . 3
| |
| 6 | 5 | a1i 11 |
. 2
|
| 7 | rexcom 3099 |
. . . . . 6
| |
| 8 | 7 | anbi2i 730 |
. . . . 5
|
| 9 | anidm 676 |
. . . . 5
| |
| 10 | 8, 9 | bitri 264 |
. . . 4
|
| 11 | 10 | a1i 11 |
. . 3
|
| 12 | r19.26 3064 |
. . . . . . . 8
| |
| 13 | nfra1 2941 |
. . . . . . . . . . . . . 14
| |
| 14 | 13 | r19.3rz 4062 |
. . . . . . . . . . . . 13
|
| 15 | 14 | bicomd 213 |
. . . . . . . . . . . 12
|
| 16 | 15 | adantr 481 |
. . . . . . . . . . 11
|
| 17 | 16 | adantr 481 |
. . . . . . . . . 10
|
| 18 | 17 | anbi2d 740 |
. . . . . . . . 9
|
| 19 | jcab 907 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | ralbii 2980 |
. . . . . . . . . . . . 13
|
| 21 | r19.26 3064 |
. . . . . . . . . . . . 13
| |
| 22 | 20, 21 | bitri 264 |
. . . . . . . . . . . 12
|
| 23 | 22 | ralbii 2980 |
. . . . . . . . . . 11
|
| 24 | r19.26 3064 |
. . . . . . . . . . 11
| |
| 25 | 23, 24 | bitri 264 |
. . . . . . . . . 10
|
| 26 | 25 | a1i 11 |
. . . . . . . . 9
|
| 27 | 18, 26 | bitr4d 271 |
. . . . . . . 8
|
| 28 | 12, 27 | syl5rbb 273 |
. . . . . . 7
|
| 29 | r19.26 3064 |
. . . . . . . . 9
| |
| 30 | nfra1 2941 |
. . . . . . . . . . . . 13
| |
| 31 | 30 | r19.3rz 4062 |
. . . . . . . . . . . 12
|
| 32 | 31 | ad2antlr 763 |
. . . . . . . . . . 11
|
| 33 | 32 | bicomd 213 |
. . . . . . . . . 10
|
| 34 | ralcom 3098 |
. . . . . . . . . . 11
| |
| 35 | 34 | a1i 11 |
. . . . . . . . . 10
|
| 36 | 33, 35 | anbi12d 747 |
. . . . . . . . 9
|
| 37 | 29, 36 | syl5bb 272 |
. . . . . . . 8
|
| 38 | 37 | ralbidv 2986 |
. . . . . . 7
|
| 39 | 28, 38 | bitr4d 271 |
. . . . . 6
|
| 40 | r19.23v 3023 |
. . . . . . . . 9
| |
| 41 | r19.23v 3023 |
. . . . . . . . 9
| |
| 42 | 40, 41 | anbi12i 733 |
. . . . . . . 8
|
| 43 | 42 | 2ralbii 2981 |
. . . . . . 7
|
| 44 | 43 | a1i 11 |
. . . . . 6
|
| 45 | neneq 2800 |
. . . . . . . . . . 11
| |
| 46 | neneq 2800 |
. . . . . . . . . . 11
| |
| 47 | 45, 46 | anim12i 590 |
. . . . . . . . . 10
|
| 48 | 47 | olcd 408 |
. . . . . . . . 9
|
| 49 | dfbi3 994 |
. . . . . . . . 9
| |
| 50 | 48, 49 | sylibr 224 |
. . . . . . . 8
|
| 51 | nfre1 3005 |
. . . . . . . . . 10
| |
| 52 | nfv 1843 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | nfim 1825 |
. . . . . . . . 9
|
| 54 | nfre1 3005 |
. . . . . . . . . 10
| |
| 55 | nfv 1843 |
. . . . . . . . . 10
| |
| 56 | 54, 55 | nfim 1825 |
. . . . . . . . 9
|
| 57 | 53, 56 | raaan2 41175 |
. . . . . . . 8
|
| 58 | 50, 57 | syl 17 |
. . . . . . 7
|
| 59 | 58 | adantr 481 |
. . . . . 6
|
| 60 | 39, 44, 59 | 3bitrd 294 |
. . . . 5
|
| 61 | 60 | 2rexbidva 3056 |
. . . 4
|
| 62 | reeanv 3107 |
. . . 4
| |
| 63 | 61, 62 | syl6rbb 277 |
. . 3
|
| 64 | 11, 63 | anbi12d 747 |
. 2
|
| 65 | 4, 6, 64 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: 2reu4 41190 |
| Copyright terms: Public domain | W3C validator |