Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu4 Structured version   Visualization version   Unicode version

Theorem 2reu4 41190
Description: Definition of double restricted existential uniqueness ("exactly one  x and exactly one  y"), analogous to 2eu4 2556. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
2reu4  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E. x  e.  A  ph )  <->  ( E. x  e.  A  E. y  e.  B  ph  /\  E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
Distinct variable groups:    z, w, ph    x, w, y, A, z   
w, B, x, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem 2reu4
StepHypRef Expression
1 reurex 3160 . . . 4  |-  ( E! x  e.  A  E. y  e.  B  ph  ->  E. x  e.  A  E. y  e.  B  ph )
2 rexn0 4074 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  ph  ->  A  =/=  (/) )
31, 2syl 17 . . 3  |-  ( E! x  e.  A  E. y  e.  B  ph  ->  A  =/=  (/) )
4 reurex 3160 . . . 4  |-  ( E! y  e.  B  E. x  e.  A  ph  ->  E. y  e.  B  E. x  e.  A  ph )
5 rexn0 4074 . . . 4  |-  ( E. y  e.  B  E. x  e.  A  ph  ->  B  =/=  (/) )
64, 5syl 17 . . 3  |-  ( E! y  e.  B  E. x  e.  A  ph  ->  B  =/=  (/) )
73, 6anim12i 590 . 2  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E. x  e.  A  ph )  -> 
( A  =/=  (/)  /\  B  =/=  (/) ) )
8 ne0i 3921 . . . . . 6  |-  ( x  e.  A  ->  A  =/=  (/) )
9 ne0i 3921 . . . . . 6  |-  ( y  e.  B  ->  B  =/=  (/) )
108, 9anim12i 590 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( A  =/=  (/)  /\  B  =/=  (/) ) )
1110a1d 25 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ph  ->  ( A  =/=  (/)  /\  B  =/=  (/) ) ) )
1211rexlimivv 3036 . . 3  |-  ( E. x  e.  A  E. y  e.  B  ph  ->  ( A  =/=  (/)  /\  B  =/=  (/) ) )
1312adantr 481 . 2  |-  ( ( E. x  e.  A  E. y  e.  B  ph 
/\  E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) )  ->  ( A  =/=  (/)  /\  B  =/=  (/) ) )
14 2reu4a 41189 . 2  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( E! x  e.  A  E. y  e.  B  ph  /\  E! y  e.  B  E. x  e.  A  ph )  <->  ( E. x  e.  A  E. y  e.  B  ph 
/\  E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) ) )
157, 13, 14pm5.21nii 368 1  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E. x  e.  A  ph )  <->  ( E. x  e.  A  E. y  e.  B  ph  /\  E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator