MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexn0 Structured version   Visualization version   Unicode version

Theorem rexn0 4074
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Assertion
Ref Expression
rexn0  |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rexn0
StepHypRef Expression
1 ne0i 3921 . . 3  |-  ( x  e.  A  ->  A  =/=  (/) )
21a1d 25 . 2  |-  ( x  e.  A  ->  ( ph  ->  A  =/=  (/) ) )
32rexlimiv 3027 1  |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    =/= wne 2794   E.wrex 2913   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  reusv2lem3  4871  eusvobj2  6643  isdrs2  16939  ismnd  17297  slwn0  18030  lbsexg  19164  iunconn  21231  grpon0  27356  filbcmb  33535  isbnd2  33582  rencldnfi  37385  iunconnlem2  39171  stoweidlem14  40231  hoidmvval0  40801  2reu4  41190
  Copyright terms: Public domain W3C validator