| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2reu5lem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 2reu5 3416. This lemma is interesting in its own right, showing that existential restriction in the last conjunct (the "at most one" part) is optional; compare rmo2 3526. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reu5lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2reu5lem1 3413 |
. . 3
| |
| 2 | 2reu5lem2 3414 |
. . 3
| |
| 3 | 1, 2 | anbi12i 733 |
. 2
|
| 4 | 2eu5 2557 |
. 2
| |
| 5 | 3anass 1042 |
. . . . . . 7
| |
| 6 | 5 | exbii 1774 |
. . . . . 6
|
| 7 | 19.42v 1918 |
. . . . . 6
| |
| 8 | df-rex 2918 |
. . . . . . . 8
| |
| 9 | 8 | bicomi 214 |
. . . . . . 7
|
| 10 | 9 | anbi2i 730 |
. . . . . 6
|
| 11 | 6, 7, 10 | 3bitri 286 |
. . . . 5
|
| 12 | 11 | exbii 1774 |
. . . 4
|
| 13 | df-rex 2918 |
. . . 4
| |
| 14 | 12, 13 | bitr4i 267 |
. . 3
|
| 15 | 3anan12 1051 |
. . . . . . . . . . 11
| |
| 16 | 15 | imbi1i 339 |
. . . . . . . . . 10
|
| 17 | impexp 462 |
. . . . . . . . . 10
| |
| 18 | impexp 462 |
. . . . . . . . . . 11
| |
| 19 | 18 | imbi2i 326 |
. . . . . . . . . 10
|
| 20 | 16, 17, 19 | 3bitri 286 |
. . . . . . . . 9
|
| 21 | 20 | albii 1747 |
. . . . . . . 8
|
| 22 | df-ral 2917 |
. . . . . . . 8
| |
| 23 | r19.21v 2960 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | 3bitr2i 288 |
. . . . . . 7
|
| 25 | 24 | albii 1747 |
. . . . . 6
|
| 26 | df-ral 2917 |
. . . . . 6
| |
| 27 | 25, 26 | bitr4i 267 |
. . . . 5
|
| 28 | 27 | exbii 1774 |
. . . 4
|
| 29 | 28 | exbii 1774 |
. . 3
|
| 30 | 14, 29 | anbi12i 733 |
. 2
|
| 31 | 3, 4, 30 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 |
| This theorem is referenced by: 2reu5 3416 |
| Copyright terms: Public domain | W3C validator |