MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wspmdisj Structured version   Visualization version   Unicode version

Theorem 2wspmdisj 27201
Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v  |-  V  =  (Vtx `  G )
fusgreg2wsp.m  |-  M  =  ( a  e.  V  |->  { w  e.  ( 2 WSPathsN  G )  |  ( w `  1 )  =  a } )
Assertion
Ref Expression
2wspmdisj  |- Disj  x  e.  V  ( M `  x )
Distinct variable groups:    G, a    V, a    w, G, a, x    x, V, a, w    x, M    w, V
Allowed substitution hints:    M( w, a)

Proof of Theorem 2wspmdisj
Dummy variables  y 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 400 . . . . 5  |-  ( x  =  y  ->  (
x  =  y  \/  ( ( M `  x )  i^i  ( M `  y )
)  =  (/) ) )
21a1d 25 . . . 4  |-  ( x  =  y  ->  (
( x  e.  V  /\  y  e.  V
)  ->  ( x  =  y  \/  (
( M `  x
)  i^i  ( M `  y ) )  =  (/) ) ) )
3 frgrhash2wsp.v . . . . . . . . . . . . . 14  |-  V  =  (Vtx `  G )
4 fusgreg2wsp.m . . . . . . . . . . . . . 14  |-  M  =  ( a  e.  V  |->  { w  e.  ( 2 WSPathsN  G )  |  ( w `  1 )  =  a } )
53, 4fusgreg2wsplem 27197 . . . . . . . . . . . . 13  |-  ( y  e.  V  ->  (
t  e.  ( M `
 y )  <->  ( t  e.  ( 2 WSPathsN  G )  /\  ( t ` 
1 )  =  y ) ) )
65adantl 482 . . . . . . . . . . . 12  |-  ( ( x  e.  V  /\  y  e.  V )  ->  ( t  e.  ( M `  y )  <-> 
( t  e.  ( 2 WSPathsN  G )  /\  (
t `  1 )  =  y ) ) )
76adantr 481 . . . . . . . . . . 11  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  t  e.  ( M `  x ) )  ->  ( t  e.  ( M `  y
)  <->  ( t  e.  ( 2 WSPathsN  G )  /\  ( t ` 
1 )  =  y ) ) )
83, 4fusgreg2wsplem 27197 . . . . . . . . . . . . . 14  |-  ( x  e.  V  ->  (
t  e.  ( M `
 x )  <->  ( t  e.  ( 2 WSPathsN  G )  /\  ( t ` 
1 )  =  x ) ) )
9 eqtr2 2642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( t `  1
)  =  x  /\  ( t `  1
)  =  y )  ->  x  =  y )
109expcom 451 . . . . . . . . . . . . . . . . 17  |-  ( ( t `  1 )  =  y  ->  (
( t `  1
)  =  x  ->  x  =  y )
)
1110adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  ( 2 WSPathsN  G )  /\  (
t `  1 )  =  y )  -> 
( ( t ` 
1 )  =  x  ->  x  =  y ) )
1211com12 32 . . . . . . . . . . . . . . 15  |-  ( ( t `  1 )  =  x  ->  (
( t  e.  ( 2 WSPathsN  G )  /\  (
t `  1 )  =  y )  ->  x  =  y )
)
1312adantl 482 . . . . . . . . . . . . . 14  |-  ( ( t  e.  ( 2 WSPathsN  G )  /\  (
t `  1 )  =  x )  ->  (
( t  e.  ( 2 WSPathsN  G )  /\  (
t `  1 )  =  y )  ->  x  =  y )
)
148, 13syl6bi 243 . . . . . . . . . . . . 13  |-  ( x  e.  V  ->  (
t  e.  ( M `
 x )  -> 
( ( t  e.  ( 2 WSPathsN  G )  /\  ( t ` 
1 )  =  y )  ->  x  =  y ) ) )
1514adantr 481 . . . . . . . . . . . 12  |-  ( ( x  e.  V  /\  y  e.  V )  ->  ( t  e.  ( M `  x )  ->  ( ( t  e.  ( 2 WSPathsN  G
)  /\  ( t `  1 )  =  y )  ->  x  =  y ) ) )
1615imp 445 . . . . . . . . . . 11  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  t  e.  ( M `  x ) )  ->  ( (
t  e.  ( 2 WSPathsN  G )  /\  (
t `  1 )  =  y )  ->  x  =  y )
)
177, 16sylbid 230 . . . . . . . . . 10  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  t  e.  ( M `  x ) )  ->  ( t  e.  ( M `  y
)  ->  x  =  y ) )
1817con3d 148 . . . . . . . . 9  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  t  e.  ( M `  x ) )  ->  ( -.  x  =  y  ->  -.  t  e.  ( M `
 y ) ) )
1918impancom 456 . . . . . . . 8  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  -.  x  =  y )  -> 
( t  e.  ( M `  x )  ->  -.  t  e.  ( M `  y ) ) )
2019ralrimiv 2965 . . . . . . 7  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  -.  x  =  y )  ->  A. t  e.  ( M `  x )  -.  t  e.  ( M `  y )
)
21 disj 4017 . . . . . . 7  |-  ( ( ( M `  x
)  i^i  ( M `  y ) )  =  (/) 
<-> 
A. t  e.  ( M `  x )  -.  t  e.  ( M `  y ) )
2220, 21sylibr 224 . . . . . 6  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  -.  x  =  y )  -> 
( ( M `  x )  i^i  ( M `  y )
)  =  (/) )
2322olcd 408 . . . . 5  |-  ( ( ( x  e.  V  /\  y  e.  V
)  /\  -.  x  =  y )  -> 
( x  =  y  \/  ( ( M `
 x )  i^i  ( M `  y
) )  =  (/) ) )
2423expcom 451 . . . 4  |-  ( -.  x  =  y  -> 
( ( x  e.  V  /\  y  e.  V )  ->  (
x  =  y  \/  ( ( M `  x )  i^i  ( M `  y )
)  =  (/) ) ) )
252, 24pm2.61i 176 . . 3  |-  ( ( x  e.  V  /\  y  e.  V )  ->  ( x  =  y  \/  ( ( M `
 x )  i^i  ( M `  y
) )  =  (/) ) )
2625rgen2a 2977 . 2  |-  A. x  e.  V  A. y  e.  V  ( x  =  y  \/  (
( M `  x
)  i^i  ( M `  y ) )  =  (/) )
27 fveq2 6191 . . 3  |-  ( x  =  y  ->  ( M `  x )  =  ( M `  y ) )
2827disjor 4634 . 2  |-  (Disj  x  e.  V  ( M `  x )  <->  A. x  e.  V  A. y  e.  V  ( x  =  y  \/  (
( M `  x
)  i^i  ( M `  y ) )  =  (/) ) )
2926, 28mpbir 221 1  |- Disj  x  e.  V  ( M `  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573   (/)c0 3915  Disj wdisj 4620    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1c1 9937   2c2 11070  Vtxcvtx 25874   WSPathsN cwwspthsn 26720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  fusgreghash2wsp  27202
  Copyright terms: Public domain W3C validator