| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wspmdisj | Structured version Visualization version Unicode version | ||
| Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrhash2wsp.v |
|
| fusgreg2wsp.m |
|
| Ref | Expression |
|---|---|
| 2wspmdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 400 |
. . . . 5
| |
| 2 | 1 | a1d 25 |
. . . 4
|
| 3 | frgrhash2wsp.v |
. . . . . . . . . . . . . 14
| |
| 4 | fusgreg2wsp.m |
. . . . . . . . . . . . . 14
| |
| 5 | 3, 4 | fusgreg2wsplem 27197 |
. . . . . . . . . . . . 13
|
| 6 | 5 | adantl 482 |
. . . . . . . . . . . 12
|
| 7 | 6 | adantr 481 |
. . . . . . . . . . 11
|
| 8 | 3, 4 | fusgreg2wsplem 27197 |
. . . . . . . . . . . . . 14
|
| 9 | eqtr2 2642 |
. . . . . . . . . . . . . . . . . 18
| |
| 10 | 9 | expcom 451 |
. . . . . . . . . . . . . . . . 17
|
| 11 | 10 | adantl 482 |
. . . . . . . . . . . . . . . 16
|
| 12 | 11 | com12 32 |
. . . . . . . . . . . . . . 15
|
| 13 | 12 | adantl 482 |
. . . . . . . . . . . . . 14
|
| 14 | 8, 13 | syl6bi 243 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantr 481 |
. . . . . . . . . . . 12
|
| 16 | 15 | imp 445 |
. . . . . . . . . . 11
|
| 17 | 7, 16 | sylbid 230 |
. . . . . . . . . 10
|
| 18 | 17 | con3d 148 |
. . . . . . . . 9
|
| 19 | 18 | impancom 456 |
. . . . . . . 8
|
| 20 | 19 | ralrimiv 2965 |
. . . . . . 7
|
| 21 | disj 4017 |
. . . . . . 7
| |
| 22 | 20, 21 | sylibr 224 |
. . . . . 6
|
| 23 | 22 | olcd 408 |
. . . . 5
|
| 24 | 23 | expcom 451 |
. . . 4
|
| 25 | 2, 24 | pm2.61i 176 |
. . 3
|
| 26 | 25 | rgen2a 2977 |
. 2
|
| 27 | fveq2 6191 |
. . 3
| |
| 28 | 27 | disjor 4634 |
. 2
|
| 29 | 26, 28 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: fusgreghash2wsp 27202 |
| Copyright terms: Public domain | W3C validator |