MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreg2wsplem Structured version   Visualization version   Unicode version

Theorem fusgreg2wsplem 27197
Description: Lemma for fusgreg2wsp 27200 and related theorems. (Contributed by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v  |-  V  =  (Vtx `  G )
fusgreg2wsp.m  |-  M  =  ( a  e.  V  |->  { w  e.  ( 2 WSPathsN  G )  |  ( w `  1 )  =  a } )
Assertion
Ref Expression
fusgreg2wsplem  |-  ( N  e.  V  ->  (
p  e.  ( M `
 N )  <->  ( p  e.  ( 2 WSPathsN  G )  /\  ( p ` 
1 )  =  N ) ) )
Distinct variable groups:    G, a    V, a    w, G    N, a, w    w, p
Allowed substitution hints:    G( p)    M( w, p, a)    N( p)    V( w, p)

Proof of Theorem fusgreg2wsplem
StepHypRef Expression
1 eqeq2 2633 . . . . 5  |-  ( a  =  N  ->  (
( w `  1
)  =  a  <->  ( w `  1 )  =  N ) )
21rabbidv 3189 . . . 4  |-  ( a  =  N  ->  { w  e.  ( 2 WSPathsN  G )  |  ( w ` 
1 )  =  a }  =  { w  e.  ( 2 WSPathsN  G )  |  ( w ` 
1 )  =  N } )
3 fusgreg2wsp.m . . . 4  |-  M  =  ( a  e.  V  |->  { w  e.  ( 2 WSPathsN  G )  |  ( w `  1 )  =  a } )
4 ovex 6678 . . . . 5  |-  ( 2 WSPathsN  G )  e.  _V
54rabex 4813 . . . 4  |-  { w  e.  ( 2 WSPathsN  G )  |  ( w ` 
1 )  =  N }  e.  _V
62, 3, 5fvmpt 6282 . . 3  |-  ( N  e.  V  ->  ( M `  N )  =  { w  e.  ( 2 WSPathsN  G )  |  ( w `  1 )  =  N } )
76eleq2d 2687 . 2  |-  ( N  e.  V  ->  (
p  e.  ( M `
 N )  <->  p  e.  { w  e.  ( 2 WSPathsN  G )  |  ( w `  1 )  =  N } ) )
8 fveq1 6190 . . . 4  |-  ( w  =  p  ->  (
w `  1 )  =  ( p ` 
1 ) )
98eqeq1d 2624 . . 3  |-  ( w  =  p  ->  (
( w `  1
)  =  N  <->  ( p `  1 )  =  N ) )
109elrab 3363 . 2  |-  ( p  e.  { w  e.  ( 2 WSPathsN  G )  |  ( w ` 
1 )  =  N }  <->  ( p  e.  ( 2 WSPathsN  G )  /\  ( p ` 
1 )  =  N ) )
117, 10syl6bb 276 1  |-  ( N  e.  V  ->  (
p  e.  ( M `
 N )  <->  ( p  e.  ( 2 WSPathsN  G )  /\  ( p ` 
1 )  =  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1c1 9937   2c2 11070  Vtxcvtx 25874   WSPathsN cwwspthsn 26720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  fusgr2wsp2nb  27198  fusgreg2wsp  27200  2wspmdisj  27201
  Copyright terms: Public domain W3C validator