| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orcomb | Structured version Visualization version Unicode version | ||
| Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| 3orcomb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 402 |
. . 3
| |
| 2 | 1 | orbi2i 541 |
. 2
|
| 3 | 3orass 1040 |
. 2
| |
| 4 | 3orass 1040 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-3or 1038 |
| This theorem is referenced by: eueq3 3381 swoso 7775 swrdnd 13432 colcom 25453 legso 25494 lncom 25517 soseq 31751 colinearperm1 32169 frege129d 38055 ordelordALT 38747 ordelordALTVD 39103 |
| Copyright terms: Public domain | W3C validator |